The use of nitrogen-doped graphene supporting Pt nanoparticles as a catalyst for methanolelectrocatalytic oxidation
Nitrogen-doped graphene (N-G) was prepared by thermal annealing of graphene oxide in ammonia at different temperatures. The resultant N-G was used as a conductive support for Pt nanoparticles (Pt/N-G) and the electrocatalytic activity of the Pt/N-G catalysts towards methanol oxidation was examined....
| Main Authors: | , , , , , , |
|---|---|
| Format: | Journal Article |
| Published: |
Pergamon
2013
|
| Online Access: | http://hdl.handle.net/20.500.11937/21059 |
| Summary: | Nitrogen-doped graphene (N-G) was prepared by thermal annealing of graphene oxide in ammonia at different temperatures. The resultant N-G was used as a conductive support for Pt nanoparticles (Pt/N-G) and the electrocatalytic activity of the Pt/N-G catalysts towards methanol oxidation was examined. To investigate the microstructure and morphology of the synthesized catalysts, X-ray diffraction, scanning and transmission electron microscopy and X-ray photoelectron spectroscopy were used. The catalytic activity of the catalysts towards the oxidation of methanol was evaluated by cyclic voltammetry. Compared to a control catalyst of Pt loaded on undoped graphene, the Pt/N-G materials show higher electrochemical activity towards methanol oxidation. The excellent electrochemical performance of Pt/N-G is mainly attributed to the nitrogen doping and the uniform distribution of Pt particles on the doped graphene support. These results indicate that N-dopedgraphene has great potential as a high-performance catalyst support for fuel cell electrocatalysis. |
|---|