Effect of Volatile Boron Species on the Electrocatalytic Activity of Cathodes of Solid Oxide Fuel Cells: III. Ba0.5Sr0.5Co0.8Fe0.2O3-δ Electrodes

The effect of volatile boron species on the electrocatalytic activity, microstructure and phase stability of Ba0.5Sr0.5Co0.8Fe0.2O3-d (BSCF) cathodes has been studied. The cathodes were heat-treated at 800?C for 7 days in air in the presence of boron species vaporized from borosilicate glass, and we...

Full description

Bibliographic Details
Main Authors: Chen, Kongfa, Hyodo, J., O'Donnell, Kane, Rickard, William, Ishihara, T., Jiang, San Ping
Format: Journal Article
Published: The Electrochemical Society, Inc 2014
Subjects:
Online Access:http://hdl.handle.net/20.500.11937/21057
_version_ 1848750484339294208
author Chen, Kongfa
Hyodo, J.
O'Donnell, Kane
Rickard, William
Ishihara, T.
Jiang, San Ping
author_facet Chen, Kongfa
Hyodo, J.
O'Donnell, Kane
Rickard, William
Ishihara, T.
Jiang, San Ping
author_sort Chen, Kongfa
building Curtin Institutional Repository
collection Online Access
description The effect of volatile boron species on the electrocatalytic activity, microstructure and phase stability of Ba0.5Sr0.5Co0.8Fe0.2O3-d (BSCF) cathodes has been studied. The cathodes were heat-treated at 800?C for 7 days in air in the presence of boron species vaporized from borosilicate glass, and were characterized by EIS, SEM, AFM, SIMS, XRD, XPS and ICP-OES. The results have shown that after the heat-treatment in the presence of borosilicate glass, boron deposition occurs mainly on the region near electrode surface, leading to the significant Ba and in particular Sr segregation, microstructure change and phase decomposition. On the other hand, the microstructure of the inner electrode layer is almost intact. Electrode polarization resistance, RE, of an as-prepared BSCF cathode is 0.93 and 0.23 Q cm2 at 650 and 800?C, respectively, and changes to 2.08 and 0.15 Q cm2 after heat-treatment at 800?C for 7 days in the presence of borosilicate glass, respectively. The increase in RE for the O2 reduction reaction on BSCF is much lower than that observed on La0.6Sr0.4Co0.2Fe0.8O3-d (LSCF) cathodes, indicating that BSCF cathodes have a much better tolerance toward boron deposition and poisoning. The limited attack of volatile boron species on BSCF is most likely related to the much slower kinetics of the formation of strontium and barium borates as compared to the formation of lanthanum borates. This study provides a significant insight into design and development of better contaminant-tolerant cathode materials for durable solid oxide fuel cell (SOFC) technologies.
first_indexed 2025-11-14T07:37:34Z
format Journal Article
id curtin-20.500.11937-21057
institution Curtin University Malaysia
institution_category Local University
last_indexed 2025-11-14T07:37:34Z
publishDate 2014
publisher The Electrochemical Society, Inc
recordtype eprints
repository_type Digital Repository
spelling curtin-20.500.11937-210572017-09-13T13:45:15Z Effect of Volatile Boron Species on the Electrocatalytic Activity of Cathodes of Solid Oxide Fuel Cells: III. Ba0.5Sr0.5Co0.8Fe0.2O3-δ Electrodes Chen, Kongfa Hyodo, J. O'Donnell, Kane Rickard, William Ishihara, T. Jiang, San Ping Solid Oxide Fuel Cells The effect of volatile boron species on the electrocatalytic activity, microstructure and phase stability of Ba0.5Sr0.5Co0.8Fe0.2O3-d (BSCF) cathodes has been studied. The cathodes were heat-treated at 800?C for 7 days in air in the presence of boron species vaporized from borosilicate glass, and were characterized by EIS, SEM, AFM, SIMS, XRD, XPS and ICP-OES. The results have shown that after the heat-treatment in the presence of borosilicate glass, boron deposition occurs mainly on the region near electrode surface, leading to the significant Ba and in particular Sr segregation, microstructure change and phase decomposition. On the other hand, the microstructure of the inner electrode layer is almost intact. Electrode polarization resistance, RE, of an as-prepared BSCF cathode is 0.93 and 0.23 Q cm2 at 650 and 800?C, respectively, and changes to 2.08 and 0.15 Q cm2 after heat-treatment at 800?C for 7 days in the presence of borosilicate glass, respectively. The increase in RE for the O2 reduction reaction on BSCF is much lower than that observed on La0.6Sr0.4Co0.2Fe0.8O3-d (LSCF) cathodes, indicating that BSCF cathodes have a much better tolerance toward boron deposition and poisoning. The limited attack of volatile boron species on BSCF is most likely related to the much slower kinetics of the formation of strontium and barium borates as compared to the formation of lanthanum borates. This study provides a significant insight into design and development of better contaminant-tolerant cathode materials for durable solid oxide fuel cell (SOFC) technologies. 2014 Journal Article http://hdl.handle.net/20.500.11937/21057 10.1149/2.0251412jes The Electrochemical Society, Inc fulltext
spellingShingle Solid Oxide Fuel Cells
Chen, Kongfa
Hyodo, J.
O'Donnell, Kane
Rickard, William
Ishihara, T.
Jiang, San Ping
Effect of Volatile Boron Species on the Electrocatalytic Activity of Cathodes of Solid Oxide Fuel Cells: III. Ba0.5Sr0.5Co0.8Fe0.2O3-δ Electrodes
title Effect of Volatile Boron Species on the Electrocatalytic Activity of Cathodes of Solid Oxide Fuel Cells: III. Ba0.5Sr0.5Co0.8Fe0.2O3-δ Electrodes
title_full Effect of Volatile Boron Species on the Electrocatalytic Activity of Cathodes of Solid Oxide Fuel Cells: III. Ba0.5Sr0.5Co0.8Fe0.2O3-δ Electrodes
title_fullStr Effect of Volatile Boron Species on the Electrocatalytic Activity of Cathodes of Solid Oxide Fuel Cells: III. Ba0.5Sr0.5Co0.8Fe0.2O3-δ Electrodes
title_full_unstemmed Effect of Volatile Boron Species on the Electrocatalytic Activity of Cathodes of Solid Oxide Fuel Cells: III. Ba0.5Sr0.5Co0.8Fe0.2O3-δ Electrodes
title_short Effect of Volatile Boron Species on the Electrocatalytic Activity of Cathodes of Solid Oxide Fuel Cells: III. Ba0.5Sr0.5Co0.8Fe0.2O3-δ Electrodes
title_sort effect of volatile boron species on the electrocatalytic activity of cathodes of solid oxide fuel cells: iii. ba0.5sr0.5co0.8fe0.2o3-δ electrodes
topic Solid Oxide Fuel Cells
url http://hdl.handle.net/20.500.11937/21057