Activation and deactivation kinetics of oxygen reduction over a la 0.8Sr0.2Sc0.1Mn0.9O3 cathode
Electrochemical impedance spectroscopy, step current polarization, and cyclic voltammetry were applied to investigate the activation and deactivation kinetics of oxygen reduction over a novel La0.8Sr 0.2Sc0.1Mn0.9O3 (LSSM) cathode material. Oxygen vacancies were created after cathodic polarization f...
| Main Authors: | Zheng, Y., Ran, R., Shao, Zongping |
|---|---|
| Format: | Journal Article |
| Published: |
American Chemical Society
2008
|
| Online Access: | http://hdl.handle.net/20.500.11937/20204 |
Similar Items
A comparative study of La0.8Sr0.2MnO3 and La0.8Sr0.2Sc0.1Mn0.9O3 as cathode materials of single-chamber SOFCs operating on a methane-air mixture
by: Zhang, C., et al.
Published: (2009)
by: Zhang, C., et al.
Published: (2009)
A new symmetric solid-oxide fuel cell with La0.8Sr0.2Sc0.2Mn0.8O3-d perovskite oxide as both the anode and cathode
by: Zheng, Y., et al.
Published: (2009)
by: Zheng, Y., et al.
Published: (2009)
Assessment of nickel cermets and La0.8Sr0.2Sc0.2Mn0.8O3 as solid-oxide fuel cell anodes operating on carbon monoxide fuel
by: Su, C., et al.
Published: (2010)
by: Su, C., et al.
Published: (2010)
A novel Ba0.6Sr0.4Co0.9Nb0.1O3-d cathode for protonic solid-oxide fuel cells
by: Lin, Y., et al.
Published: (2010)
by: Lin, Y., et al.
Published: (2010)
Synthesis and assessment of la0.8Sr0.2Sc yMn1-yO3-d as cathodes for solid-oxide fuel cells on scandium-stabilized zirconia electrolyte
by: Gu, H., et al.
Published: (2008)
by: Gu, H., et al.
Published: (2008)
Evaluation of Ba0.6Sr0.4Co0.9Nb0.1O3-d mixed conductor as a cathode for intermediate-temperature oxygen-ionic solid-oxide fuel cells
by: Huang, C., et al.
Published: (2010)
by: Huang, C., et al.
Published: (2010)
Electrochemical performance of SrSc0.2Co0.8O 3-d cathode on Sm0.2Ce0.8O1.9 electrolyte for low temperature SOFCs
by: Zhou, W., et al.
Published: (2009)
by: Zhou, W., et al.
Published: (2009)
(La0.8Sr0.2)0.9MnO3–Gd0.2Ce0.8O1.9 composite cathodes prepared from (Gd, Ce)(NO3) x -modified (La0.8Sr0.2)0.9MnO3 for intermediate-temperature solid oxide fuel cells
by: Leng, Y.J., et al.
Published: (2006)
by: Leng, Y.J., et al.
Published: (2006)
Performance of SrSc0.2Co0.8O3-d + Sm0.5Sr0.5CoO3-d mixed-conducting composite electrodes for oxygen reduction at intermediate temperatures
by: Guo, Y., et al.
Published: (2009)
by: Guo, Y., et al.
Published: (2009)
Evaluation of the CO2 Poisoning Effect on a Highly Active Cathode SrSc0.175Nb0.025Co0.8O3-δ in the Oxygen Reduction Reaction
by: Zhang, Y., et al.
Published: (2016)
by: Zhang, Y., et al.
Published: (2016)
Ce0.9Gd0.1O2−δ membranes coated with porous Ba0.5Sr0.5Co0.8Fe0.2O3−δ for oxygen separation
by: Zhang, C., et al.
Published: (2015)
by: Zhang, C., et al.
Published: (2015)
Study on oxygen activation and methane oxidation over La0.8Sr0.2MnO3 electrode in single-chamber solid oxide fuel cells via an electrochemical approach
by: Zheng, Y., et al.
Published: (2012)
by: Zheng, Y., et al.
Published: (2012)
Chromium deposition and poisoning in dry and humidified air at (La0.8Sr0.2)0.9MnO3+d cathodes of solid oxide fuel cells
by: Chen, X., et al.
Published: (2010)
by: Chen, X., et al.
Published: (2010)
Cr doping effect in B-site of La0.75Sr0.25MnO 3 on its phase stability and performance as an SOFC anode
by: Zheng, Y., et al.
Published: (2009)
by: Zheng, Y., et al.
Published: (2009)
Significant effects of sintering temperature on the performance of La0.6Sr0.4Co0.2Fe0.8O3-d oxygen selective membranes
by: Zeng, P., et al.
Published: (2007)
by: Zeng, P., et al.
Published: (2007)
A Comparative Structure and Performance Study of La1-xSrxCoO3-δ and La1-xSrxCo0.9Nb0.1O3-δ (x = 0.5, 0.7, 0.9, and 1.0) Oxygen Permeable Mixed Conductors
by: Zhao, J., et al.
Published: (2011)
by: Zhao, J., et al.
Published: (2011)
Properties and performance of Ba0.5Sr0.5Co0.8Fe0.2O3-d + Sm0.2Ce0.8O1.9 composite cathode
by: Wang, K., et al.
Published: (2008)
by: Wang, K., et al.
Published: (2008)
A composite oxygen-reduction electrode composed of SrSc 0.2Co0.8O3-d perovskite and Sm 0.2Ce0.8O1.9 for an intermediate-temperature solid-oxide fuel cell
by: An, B., et al.
Published: (2010)
by: An, B., et al.
Published: (2010)
Silver-modified Ba0.5Sr0.5Co0.8Fe 0.2O3-d as cathodes for a proton conducting solid-oxide fuel cell
by: Lin, Y., et al.
Published: (2010)
by: Lin, Y., et al.
Published: (2010)
A La0.8Sr0.2MnO3/La0.6Sr0.4Co0.2Fe0.8O3−δ core–shell structured cathode by a rapid sintering process for solid oxide fuel cells
by: Ai, Na, et al.
Published: (2017)
by: Ai, Na, et al.
Published: (2017)
Cobalt-free SrNbxFe1−xO3−δ (x = 0.05, 0.1 and 0.2) perovskite cathodes for intermediate temperature solid oxide fuel cells
by: Jiang, S., et al.
Published: (2015)
by: Jiang, S., et al.
Published: (2015)
Deactivation and Regeneration of Oxygen Reduction Reactivity on Double Perovskite Ba(2)Bi(0.1)Sc(0.2)Co(1.7)O(6-x) Cathode for Intermediate-Temperature Solid Oxide Fuel Cells
by: Zhou, W., et al.
Published: (2011)
by: Zhou, W., et al.
Published: (2011)
Nanocrystalline Zn0.9Mn0.1S Thin Film : Case Studies
by: Mohammad Syuhaimi, Ab-Rahman, et al.
Published: (2011)
by: Mohammad Syuhaimi, Ab-Rahman, et al.
Published: (2011)
Progress in understanding and development of Ba0.5Sr0.5Co0.8Fe0.2O3−δ-based cathodes for intermediate-temperature solid-oxide fuel cells: A review
by: Zhou, W., et al.
Published: (2009)
by: Zhou, W., et al.
Published: (2009)
La0.6Sr0.4Co0.2Fe0.8O3-d Hollow Fibre Membrane Performance Improvement by Coating of Ba0.5Sr0.5Co0.9Nb0.1O3-d Porous Layer
by: Han, D., et al.
Published: (2014)
by: Han, D., et al.
Published: (2014)
SrCo0.9Sc0.1O3-8 perovskite hollow fibre membranes for air separtion at intermediate temperatures
by: Meng, B., et al.
Published: (2009)
by: Meng, B., et al.
Published: (2009)
Structural, electrical and magnetoresistance of La 0.7Ca0.28 Sr0.02Mn03 at different sintering temperatures.
by: Lim, Kean Pah, et al.
Published: (2011)
by: Lim, Kean Pah, et al.
Published: (2011)
Evaluation of Ba0.5Sr0.5Co0.8Fe0.2O3-d as a potential cathode for an anode-supported proton-conducting solid-oxide fuel cell
by: Lin, Y., et al.
Published: (2008)
by: Lin, Y., et al.
Published: (2008)
Electrochemical performance of silver-modified Ba0.5Sr0.5Co0.8Fe0.2O3-d cathodes prepared via electroless deposition
by: Zhou, W., et al.
Published: (2008)
by: Zhou, W., et al.
Published: (2008)
High-performance SrNb0.1Co0.9-xFexO 3-d perovskite cathodes for low-temperature solid oxide fuel cells
by: Zhu, Y., et al.
Published: (2014)
by: Zhu, Y., et al.
Published: (2014)
The catalytic effects of La0.3Sr0.7Fe0.7Cu0.2Mo0.1O3 perovskite and its hollow fibre membrane for air separation and methane conversion reactions
by: Meng, B., et al.
Published: (2015)
by: Meng, B., et al.
Published: (2015)
Ba and Gd Doping Effect in (BaxSr1–x)0.95Gd0.05Co0.8Fe0.2O3–d (x = 0.1–0.9) Cathode on the Phase Structure and Electrochemical Performance
by: Li, Z., et al.
Published: (2012)
by: Li, Z., et al.
Published: (2012)
Sintering and oxygen permeation studies of La0.6Sr0.4Co0.2Fe0.8O3-δ ceramic membranes with improved purity
by: Zou, Y., et al.
Published: (2011)
by: Zou, Y., et al.
Published: (2011)
SrCo0.9Ti0.1O3−δ As a New Electrocatalyst for the Oxygen Evolution Reaction in Alkaline Electrolyte with Stable Performance
by: Su, C., et al.
Published: (2015)
by: Su, C., et al.
Published: (2015)
Chromium deposition and poisoning of La0.8Sr0.2MnO3 oxygen electrodes of solid oxide electrolysis cells
by: Chen, K., et al.
Published: (2015)
by: Chen, K., et al.
Published: (2015)
Combined Cr and S poisoning of La0.8Sr0.2MnO3-δ (LSM) cathode of solid oxide fuel cells
by: Wang, Cheng Cheng, et al.
Published: (2019)
by: Wang, Cheng Cheng, et al.
Published: (2019)
Optimization of BaxSr1-xCo0.9Nb0.1O3-8 perovskite as oxygen semi-permeable membranes by compositional tailoring
by: Zhao, J., et al.
Published: (2010)
by: Zhao, J., et al.
Published: (2010)
Oxygen permeation behavior through Ce0.9Gd0.1O2−δ membranes electronically short-circuited by dual-phase Ce0.9Gd0.1O2−δ–Ag decoration
by: Zhang, C., et al.
Published: (2015)
by: Zhang, C., et al.
Published: (2015)
Cyclic polarization enhances the operating stability of La0.57Sr0.38Co0.18Fe0.72Nb0.1O3-δ oxygen electrode of reversible solid oxide cells
by: He, Z., et al.
Published: (2018)
by: He, Z., et al.
Published: (2018)
Effects of preparation methods on the oxygen nonstoichiometry, B-site cation valences and catalytic efficiency of perovskite La0.6Sr0.4Co0.2Fe0.8O3-8
by: Ge, L., et al.
Published: (2009)
by: Ge, L., et al.
Published: (2009)
Similar Items
-
A comparative study of La0.8Sr0.2MnO3 and La0.8Sr0.2Sc0.1Mn0.9O3 as cathode materials of single-chamber SOFCs operating on a methane-air mixture
by: Zhang, C., et al.
Published: (2009) -
A new symmetric solid-oxide fuel cell with La0.8Sr0.2Sc0.2Mn0.8O3-d perovskite oxide as both the anode and cathode
by: Zheng, Y., et al.
Published: (2009) -
Assessment of nickel cermets and La0.8Sr0.2Sc0.2Mn0.8O3 as solid-oxide fuel cell anodes operating on carbon monoxide fuel
by: Su, C., et al.
Published: (2010) -
A novel Ba0.6Sr0.4Co0.9Nb0.1O3-d cathode for protonic solid-oxide fuel cells
by: Lin, Y., et al.
Published: (2010) -
Synthesis and assessment of la0.8Sr0.2Sc yMn1-yO3-d as cathodes for solid-oxide fuel cells on scandium-stabilized zirconia electrolyte
by: Gu, H., et al.
Published: (2008)