From Paper to Paper-like Hierarchical Anatase TiO2 Film Electrode for High-Performance Lithium-Ion Batteries
| Main Authors: | Zhao, B., Shao, Zongping |
|---|---|
| Format: | Journal Article |
| Published: |
American Chemical Society
2012
|
| Online Access: | http://hdl.handle.net/20.500.11937/19947 |
Similar Items
Porous TiO2(B)/anatase microspheres with hierarchical nano and microstructures for high-performance lithium-ion batteries
by: Wang, J., et al.
Published: (2013)
by: Wang, J., et al.
Published: (2013)
Electrospinning based fabrication and performance improvement of film electrodes for lithium-ion batteries composed of TiO2 hollow fibers
by: Yuan, T., et al.
Published: (2011)
by: Yuan, T., et al.
Published: (2011)
Highly flexible self-standing film electrode composed of mesoporous rutile TiO2/C nanofibers for lithium-ion batteries
by: Zhao, B., et al.
Published: (2012)
by: Zhao, B., et al.
Published: (2012)
Hierarchical carbon-coated acanthosphere-like Li4Ti5O12 microspheres for high-power lithium-ion batteries
by: Sha, Y., et al.
Published: (2016)
by: Sha, Y., et al.
Published: (2016)
Facile synthesis of nanocrystalline TiO2 mesoporous microspheres for lithium-ion batteries
by: Wang, J., et al.
Published: (2011)
by: Wang, J., et al.
Published: (2011)
Mesoporous and Nanostructured TiO2 layer with Ultra-High Loading on Nitrogen-Doped Carbon Foams as Flexible and Free-Standing Electrodes for Lithium-Ion Batteries
by: Chu, S., et al.
Published: (2016)
by: Chu, S., et al.
Published: (2016)
A comprehensive review of Li4Ti5O12-based electrodes for lithium-ion batteries: The latest advancements and future perspectives
by: Zhao, B., et al.
Published: (2015)
by: Zhao, B., et al.
Published: (2015)
Plasma activation and atomic layer deposition of TiO2 on polypropylene membranes for improved performances of lithium-ion batteries
by: Chen, H., et al.
Published: (2014)
by: Chen, H., et al.
Published: (2014)
Synthesis and photo activity of flower-like anatase TiO2 with {001} facets exposed
by: Zhao, Y., et al.
Published: (2012)
by: Zhao, Y., et al.
Published: (2012)
Hierarchical Structures of Single-Crystalline Anatase TiO2 Nanosheets Dominated by {001} Facets
by: Fang, W., et al.
Published: (2011)
by: Fang, W., et al.
Published: (2011)
Porous nanocrystalline TiO2 with high lithium-ion insertion performance
by: Wang, J., et al.
Published: (2013)
by: Wang, J., et al.
Published: (2013)
Two-Step Fabrication of Li4Ti5O12-Coated Carbon Nanofibers as a Flexible Film Electrode for High-Power Lithium-Ion Batteries
by: Zhang, Z., et al.
Published: (2017)
by: Zhang, Z., et al.
Published: (2017)
Solid lithium electrolyte-Li4Ti5O12 composites as anodes of lithium-ion batteries showing high-rate performance
by: Sha, Y., et al.
Published: (2013)
by: Sha, Y., et al.
Published: (2013)
Bi-layer photoanode films of hierarchical carbon-doped brookite-rutile TiO2 composite and anatase TiO2 beads for efficient dye-sensitized solar cells
by: Shen, Z., et al.
Published: (2016)
by: Shen, Z., et al.
Published: (2016)
Investigations on the Influence of Sm3+Ion on the Nano TiO2 Matrix as the Anode Material for Lithium Ion Batteries
by: Abhilash, K. P., et al.
Published: (2017)
by: Abhilash, K. P., et al.
Published: (2017)
A mechanism study of synthesis of Li4Ti5O 12 from TiO2 anatase
by: Yuan, T., et al.
Published: (2010)
by: Yuan, T., et al.
Published: (2010)
Electrolyte Engineering for Safer Lithium-Ion Batteries: A Review
by: Cao, Chencheng, et al.
Published: (2023)
by: Cao, Chencheng, et al.
Published: (2023)
Self-adhesive Co3O4/expanded graphite paper as high-performance flexible anode for Li-ion batteries
by: Zhao, Y., et al.
Published: (2015)
by: Zhao, Y., et al.
Published: (2015)
Binder-free a-MoO3 nanobelt electrode for lithium-ion batteries utilizing van der Waals forces for film formation and connection with current collector
by: Sun, Y., et al.
Published: (2013)
by: Sun, Y., et al.
Published: (2013)
A freestanding composite film electrode stacked from hierarchical electrospun sno2 nanorods and graphene sheets for reversible lithium storage
by: Jiang, S., et al.
Published: (2014)
by: Jiang, S., et al.
Published: (2014)
Magnetic Electrodeposition of the Hierarchical Cobalt Oxide Nanostructure from Spent Lithium-Ion Batteries: Its Application as a Supercapacitor Electrode
by: Aboelazm, Eslam A. A., et al.
Published: (2018)
by: Aboelazm, Eslam A. A., et al.
Published: (2018)
Self-assembled mesoporous TiO2/carbon nanotube composite with a three-dimensional conducting nanonetwork as a high-rate anode material for lithium-ion battery
by: Wang, J., et al.
Published: (2014)
by: Wang, J., et al.
Published: (2014)
Failure prediction of high-capacity electrode materials in lithium-ion batteries
by: Wang, C., et al.
Published: (2016)
by: Wang, C., et al.
Published: (2016)
An electrochemical-irradiated plasticity model for metallic electrodes in lithium-ion batteries
by: Ma, Z., et al.
Published: (2017)
by: Ma, Z., et al.
Published: (2017)
Li4Ti5O12/Sn composite anodes for lithium-ion batteries: Synthesis and electrochemical performance
by: Cai, R., et al.
Published: (2010)
by: Cai, R., et al.
Published: (2010)
Synthesis of well-crystallized Li4Ti5O12 nanoplates for lithium-ion batteries with outstanding rate capability and cycling stability
by: Sha, Y., et al.
Published: (2013)
by: Sha, Y., et al.
Published: (2013)
Enhancing Fast-Charge Capabilities in Solid-State Lithium Batteries through the Integration of High Li0.5La0.5TiO3 (LLTO) Content in the Lithium-Metal Anode
by: Cao, Chencheng, et al.
Published: (2023)
by: Cao, Chencheng, et al.
Published: (2023)
Recent Advances in Perovskite Oxides as Electrode Materials for Nonaqueous Lithium-Oxygen Batteries
by: Tan, P., et al.
Published: (2017)
by: Tan, P., et al.
Published: (2017)
Review: Two-dimensional layered material based electrodes for lithium ion and sodium ion batteries
by: Javed, Omama, et al.
Published: (2022)
by: Javed, Omama, et al.
Published: (2022)
High performances niobium oxides based negative electrode for lithium ion batteries
by: Ji, Qing
Published: (2021)
by: Ji, Qing
Published: (2021)
Double effect of electrochemical reaction and substrateon hardness in electrodes of lithium-ion batteries
by: Wang, Y., et al.
Published: (2016)
by: Wang, Y., et al.
Published: (2016)
Recovery of positive electrode active material from spent lithium-ion battery
by: Widijatmoko, Samuel D
Published: (2020)
by: Widijatmoko, Samuel D
Published: (2020)
Investigating solid electrolyte interphases on negative electrodes for beyond lithium-ion batteries
by: Dimogiannis, Konstantinos
Published: (2023)
by: Dimogiannis, Konstantinos
Published: (2023)
Cobalt Oxide Supercapacitor Electrode Recovered from Spent Lithium-Ion Battery
by: Aboelazm, Eslam A. A., et al.
Published: (2018)
by: Aboelazm, Eslam A. A., et al.
Published: (2018)
A hierarchical Zn2Mo3O8 nanodots–porous carbon composite as a superior anode for lithium-ion batteries
by: Zhu, Y., et al.
Published: (2016)
by: Zhu, Y., et al.
Published: (2016)
Understanding degradation in lithium-ion and lithium-air batteries
by: McNulty, Rory
Published: (2023)
by: McNulty, Rory
Published: (2023)
TiO2 films with oriented anatase {001} facets and their photoelectrochemical behavior as CdS nanoparticle sensitized photoanodes
by: Wang, X., et al.
Published: (2011)
by: Wang, X., et al.
Published: (2011)
Coupled electrochemical-mechanical modeling with strain gradient plasticity for lithium-ion battery electrodes
by: Wang, Y., et al.
Published: (2021)
by: Wang, Y., et al.
Published: (2021)
Polypyrrole/TiO2 nanotube arrays with coaxial heterogeneous structure as sulfur hosts for lithium sulfur batteries
by: Zhao, Yun, et al.
Published: (2016)
by: Zhao, Yun, et al.
Published: (2016)
Preparation and re-examination of Li4Ti4.85Al0.15O12 as anode material of lithium-ion battery
by: Cai, R., et al.
Published: (2011)
by: Cai, R., et al.
Published: (2011)
Similar Items
-
Porous TiO2(B)/anatase microspheres with hierarchical nano and microstructures for high-performance lithium-ion batteries
by: Wang, J., et al.
Published: (2013) -
Electrospinning based fabrication and performance improvement of film electrodes for lithium-ion batteries composed of TiO2 hollow fibers
by: Yuan, T., et al.
Published: (2011) -
Highly flexible self-standing film electrode composed of mesoporous rutile TiO2/C nanofibers for lithium-ion batteries
by: Zhao, B., et al.
Published: (2012) -
Hierarchical carbon-coated acanthosphere-like Li4Ti5O12 microspheres for high-power lithium-ion batteries
by: Sha, Y., et al.
Published: (2016) -
Facile synthesis of nanocrystalline TiO2 mesoporous microspheres for lithium-ion batteries
by: Wang, J., et al.
Published: (2011)