Novel artificial cell microencapsulation of a complex gliclazide-deoxycholic bile acid formulation: A Characterization Study
Gliclazide (G) is an antidiabetic drug commonly used in type 2 diabetes. It has extrapancreatic hypoglycemic effects, which makes it a good candidate in type 1 diabetes (T1D). In previous studies, we have shown that a gliclazide-bile acid mixture exerted a hypoglycemic effect in a rat model of T1D....
| Main Authors: | Mooranian, Armin, Negrulj, Rebecca, Chen-Tan, Nigel, Al-Sallami, H., Fang, Zhongxiang, Mukkur, Trilochan, Mikov, Momir, Golocorbin-Kon, S., Fakhoury, M., Arfuso, Frank, Al-Salami, Hani |
|---|---|
| Format: | Journal Article |
| Published: |
Dove Medical Press Ltd.
2014
|
| Subjects: | |
| Online Access: | http://hdl.handle.net/20.500.11937/19308 |
Similar Items
Stability and Release Kinetics of an Advanced Gliclazide-Cholic Acid Formulation: The Use of Artificial-Cell Microencapsulation in Slow Release Targeted Oral Delivery of Antidiabetics
by: Mooranian, Armin, et al.
Published: (2014)
by: Mooranian, Armin, et al.
Published: (2014)
Gliclazide reduces MKC intestinal transport in healthy but not diabetic rats
by: Al-Salami, Hani, et al.
Published: (2009)
by: Al-Salami, Hani, et al.
Published: (2009)
An optimized probucol microencapsulated formulation integrating a secondary bile acid (deoxycholic acid) as a permeation enhancer
by: Mooranian, Armin, et al.
Published: (2014)
by: Mooranian, Armin, et al.
Published: (2014)
Potentials and Limitations of Bile Acids in Type 2 Diabetes Mellitus: Applications of Microencapsulation as a Novel Oral Delivery System
by: Negrulj, Rebecca, et al.
Published: (2013)
by: Negrulj, Rebecca, et al.
Published: (2013)
Release and swelling studies of an innovative antidiabetic-bile acid microencapsulated formulation, as a novel targeted therapy for diabetes treatment
by: Mooranian, Armin, et al.
Published: (2015)
by: Mooranian, Armin, et al.
Published: (2015)
Application of bile acids in drug formulation and delivery
by: Stojancevic, M., et al.
Published: (2014)
by: Stojancevic, M., et al.
Published: (2014)
Release and swelling studies of an innovative antidiabetic-bile acid microencapsulated formulation, as a novel targeted therapy for diabetes treatment (vol 32, pg 151, 2014)
by: Mooranian, A., et al.
Published: (2015)
by: Mooranian, A., et al.
Published: (2015)
Microencapsulation as a novel delivery method for the potential antidiabetic drug, Probucol
by: Mooranian, Armin, et al.
Published: (2014)
by: Mooranian, Armin, et al.
Published: (2014)
Characterization of a novel bile acid-based delivery platform for microencapsulated pancreatic ß-cells.
by: Mooranian, Armin, et al.
Published: (2014)
by: Mooranian, Armin, et al.
Published: (2014)
Deoxycholic Acid as a Modifier of the Permeation of Gliclazide through the Blood Brain Barrier of a Rat
by: Lalic-Popovic, M., et al.
Published: (2013)
by: Lalic-Popovic, M., et al.
Published: (2013)
Species Classification and Molecular Studies of Bile Salt Hydrolase (BSH) Gene in Bifidobacterium Spp
by: Mustafa, Shuhaimi
Published: (2003)
by: Mustafa, Shuhaimi
Published: (2003)
Swelling, mechanical strength, and release properties of probucol microcapsules with and without a bile acid, and their potential oral delivery in diabetes
by: Negrulj, R., et al.
Published: (2015)
by: Negrulj, R., et al.
Published: (2015)
Novel chenodeoxycholic acid-sodium alginate matrix in the microencapsulation of the potential antidiabetic drug, probucol. An in vitro study
by: Mooranian, A., et al.
Published: (2015)
by: Mooranian, A., et al.
Published: (2015)
Novel artificial cell microencapsulation of probucol and bile acids in diabetes mellitus
by: Mooranian, Armin
Published: (2018)
by: Mooranian, Armin
Published: (2018)
An advanced microencapsulated system: a platform for optimized oral delivery of antidiabetic drug-bile acid formulations
by: Mooranian, A., et al.
Published: (2015)
by: Mooranian, A., et al.
Published: (2015)
Advanced bile acid-based multi-compartmental microencapsulated pancreatic ß-cells integrating a polyelectrolyte-bile acid formulation, for diabetes treatment.
by: Mooranian, A., et al.
Published: (2014)
by: Mooranian, A., et al.
Published: (2014)
Viability and topographical analysis of microencapsulated ß-cells exposed to a biotransformed tertiary bile acid: An ex vivo study
by: Mooranian, Armin, et al.
Published: (2016)
by: Mooranian, Armin, et al.
Published: (2016)
Probiotics decreased the bioavailability of the bile acid analog, monoketocholic acid, when coadministered with gliclazide, in healthy but not diabetic rats
by: Al-Salami, Hani, et al.
Published: (2012)
by: Al-Salami, Hani, et al.
Published: (2012)
Morphological, Stability, and Hypoglycemic Effects of New Gliclazide-Bile Acid Microcapsules for Type 1 Diabetes Treatment: the Microencapsulation of Anti-diabetics Using a Microcapsule-Stabilizing Bile Acid
by: Mathavan, S., et al.
Published: (2018)
by: Mathavan, S., et al.
Published: (2018)
Investigating the bile acid mediated control of Clostridioides difficile infection
by: von Emloh, Louise
Published: (2024)
by: von Emloh, Louise
Published: (2024)
Potential Applications of Gliclazide in Treating Type 1 Diabetes Mellitus: Formulation with Bile Acids and Probiotics
by: Mikov, M., et al.
Published: (2017)
by: Mikov, M., et al.
Published: (2017)
The effect of a tertiary bile acid, taurocholic acid, on the morphology and physical characteristics of microencapsulated probucol: potential applications in diabetes: a characterization study
by: Mooranian, A., et al.
Published: (2015)
by: Mooranian, A., et al.
Published: (2015)
Pharmacological effects of nanoencapsulation of human-based dosing of probucol on ratio of secondary to primary bile acids in gut, during induction and progression of type 1 diabetes
by: Mooranian, Armin, et al.
Published: (2018)
by: Mooranian, Armin, et al.
Published: (2018)
Probucol Release from Novel Multicompartmental Microcapsules for the Oral Targeted Delivery in Type 2 Diabetes
by: Mooranian, Armin, et al.
Published: (2014)
by: Mooranian, Armin, et al.
Published: (2014)
Pharmacokinetic and Drug Absorption Profiles of the Anti-Hyperglycaemic Agent Gliclazide in Oral Tissue-Targeted Microcapsules in Rats
by: Jovic, Jelena, et al.
Published: (2020)
by: Jovic, Jelena, et al.
Published: (2020)
An in vivo pharmacological study: Variation in tissue-accumulation for the drug probucol as the result of targeted microtechnology and matrix-acrylic acid optimization and stabilization techniques
by: Mooranian, Armin, et al.
Published: (2019)
by: Mooranian, Armin, et al.
Published: (2019)
High-Loading Dose of Microencapsulated Gliclazide Formulation Exerted a Hypoglycaemic Effect on Type 1 Diabetic Rats and Incorporation of a Primary Deconjugated Bile Acid, Diminished the Hypoglycaemic Antidiabetic Effect
by: Golocorbin-Kon, S., et al.
Published: (2017)
by: Golocorbin-Kon, S., et al.
Published: (2017)
Alginate-deoxycholic Acid Interaction and Its Impact on Pancreatic ?-Cells and Insulin Secretion and Potential Treatment of Type 1 Diabetes
by: Mooranian, Armin, et al.
Published: (2016)
by: Mooranian, Armin, et al.
Published: (2016)
The applications of microencapsulated formulation of gliclazide and bile acids in Type-1 diabetes mellitus
by: Mathavan, Sangeetha
Published: (2017)
by: Mathavan, Sangeetha
Published: (2017)
Diabetes development increased concentrations of the conjugated bile acid, taurocholic acid in serum, while treatment with microencapsulated-taurocholic acid exerted no hypoglycaemic effects
by: Mathavan, S., et al.
Published: (2017)
by: Mathavan, S., et al.
Published: (2017)
Eudragit®-based microcapsules of probucol with a gut-bacterial processed secondary bile acid
by: Mooranian, A., et al.
Published: (2018)
by: Mooranian, A., et al.
Published: (2018)
The impact of allylamine-bile acid combinations on cell delivery microcapsules in diabetes
by: Mooranian, Armin, et al.
Published: (2016)
by: Mooranian, Armin, et al.
Published: (2016)
Novel multicompartmental bile acid-based microcapsules for pancreatic β-cell transplantation
by: Mooranian, A., et al.
Published: (2015)
by: Mooranian, A., et al.
Published: (2015)
Data supporting development and validation of liquid chromatography tandem mass spectrometry method for the quantitative determination of bile acids in feces
by: Shafaei, A., et al.
Published: (2021)
by: Shafaei, A., et al.
Published: (2021)
Flow vibration-doubled concentric system coupled with low ratio amine to produce bile acid-macrocapsules of ß-cells
by: Mooranian, Armin, et al.
Published: (2016)
by: Mooranian, Armin, et al.
Published: (2016)
The role of the bile acid chenodeoxycholic acid in the targeted oral delivery of the anti-diabetic drug gliclazide, and its applications in type 1 diabetes
by: Mathavan, S., et al.
Published: (2015)
by: Mathavan, S., et al.
Published: (2015)
Influence of the semisynthetic bile acid MKC on the ileal permeation of gliclazide in vitro in healthy and diabetic rats treated with probiotics
by: Al-Salami, Hani, et al.
Published: (2008)
by: Al-Salami, Hani, et al.
Published: (2008)
Extraction and quantitative determination of bile acids in feces
by: Shafaei, A., et al.
Published: (2021)
by: Shafaei, A., et al.
Published: (2021)
NOVEL MULTICOMPARTMENTAL BILE ACID-BASED MICROCAPSULES FOR PANCREATIC beta-CELL TRANSPLANTATION
by: Mooranian, A., et al.
Published: (2015)
by: Mooranian, A., et al.
Published: (2015)
A comprehensive study of novel microcapsules incorporating gliclazide and a permeation enhancing bile acid: hypoglycemic effect in an animal model of Type-1 diabetes
by: Mathavan, Sangeetha, et al.
Published: (2015)
by: Mathavan, Sangeetha, et al.
Published: (2015)
Similar Items
-
Stability and Release Kinetics of an Advanced Gliclazide-Cholic Acid Formulation: The Use of Artificial-Cell Microencapsulation in Slow Release Targeted Oral Delivery of Antidiabetics
by: Mooranian, Armin, et al.
Published: (2014) -
Gliclazide reduces MKC intestinal transport in healthy but not diabetic rats
by: Al-Salami, Hani, et al.
Published: (2009) -
An optimized probucol microencapsulated formulation integrating a secondary bile acid (deoxycholic acid) as a permeation enhancer
by: Mooranian, Armin, et al.
Published: (2014) -
Potentials and Limitations of Bile Acids in Type 2 Diabetes Mellitus: Applications of Microencapsulation as a Novel Oral Delivery System
by: Negrulj, Rebecca, et al.
Published: (2013) -
Release and swelling studies of an innovative antidiabetic-bile acid microencapsulated formulation, as a novel targeted therapy for diabetes treatment
by: Mooranian, Armin, et al.
Published: (2015)