A Characterization of 3-(γc, 2)-Critical Claw-Free Graphs Which are not 3-γc-Critical

Let γ c (G) denote the minimum cardinality of a connected dominating set for G. A graph G is k-γ c -critical if γ c (G) = k, but γ c (G + xy) < k for xy Î E([`(G)])xyE(G) . Further, for integer r ≥ 2, G is said to be k-(γ c , r)-critical if γ c (G) = k, but γ c (G + xy) < k for each pair of no...

Full description

Bibliographic Details
Main Authors: Ananchuen, Watcharaphong, Ananchuen, Nawarat, Caccetta, Louis
Format: Journal Article
Published: Springer Japan KK 2010
Subjects:
Online Access:http://hdl.handle.net/20.500.11937/19085
Description
Summary:Let γ c (G) denote the minimum cardinality of a connected dominating set for G. A graph G is k-γ c -critical if γ c (G) = k, but γ c (G + xy) < k for xy Î E([`(G)])xyE(G) . Further, for integer r ≥ 2, G is said to be k-(γ c , r)-critical if γ c (G) = k, but γ c (G + xy) < k for each pair of non-adjacent vertices x and y that are at distance at most r apart. k-γ c -critical graphs are k-(γ c , r)-critical but the converse need not be true. In this paper, we give a characterization of 3-(γ c , 2)-critical claw-free graphs which are not 3-γ c -critical. In fact, we show that there are exactly four classes of such graphs.