Green synthesis of mesoporous ZnFe2O4/C composite microspheres as superior anode materials for lithium-ion batteries
The commercialized LIBs employing graphite as anodes currently suffer a series of problems from the safety, theoretical capacity (372 mAh g-1) and rate capability. Herein, self-assembly mesoporous Zn ferrite (ZnFe2O4) microsphere embedded into carbon network has been synthesized by a facile method i...
| Main Authors: | Yao, L., Hou, X., Hu, S., Wang, J., Li, M., Su, Chao, Tade, Moses, Shao, Zongping, Liu, X. |
|---|---|
| Format: | Journal Article |
| Published: |
Elsevier SA
2014
|
| Online Access: | http://hdl.handle.net/20.500.11937/19054 |
Similar Items
Corncob-shaped ZnFe2O4/C nanostructures for improved anode rate and cycle performance in lithium-ion batteries
by: Mao, J., et al.
Published: (2015)
by: Mao, J., et al.
Published: (2015)
Facile synthesis of nanocrystalline TiO2 mesoporous microspheres for lithium-ion batteries
by: Wang, J., et al.
Published: (2011)
by: Wang, J., et al.
Published: (2011)
Three Strongly Coupled Allotropes in a Functionalized Porous All-Carbon Nanocomposite as a Superior Anode for Lithium-Ion Batteries
by: Deng, X., et al.
Published: (2016)
by: Deng, X., et al.
Published: (2016)
Facile spray-drying/pyrolysis synthesis of intertwined SiO@CNFs&G composites as superior anode materials for Li-ion batteries
by: Hou, X., et al.
Published: (2014)
by: Hou, X., et al.
Published: (2014)
Self-assembled mesoporous TiO2/carbon nanotube composite with a three-dimensional conducting nanonetwork as a high-rate anode material for lithium-ion battery
by: Wang, J., et al.
Published: (2014)
by: Wang, J., et al.
Published: (2014)
Facile spray-drying/pyrolysis synthesis of core-shell structure graphite/silicon-porous carbon composite as a superior anode for Li-ion batteries
by: Li, M., et al.
Published: (2014)
by: Li, M., et al.
Published: (2014)
A hierarchical Zn2Mo3O8 nanodots–porous carbon composite as a superior anode for lithium-ion batteries
by: Zhu, Y., et al.
Published: (2016)
by: Zhu, Y., et al.
Published: (2016)
Mesoporous LiFePO4/C nanocomposite cathode materials for high power lithium ion batteries with superior performance
by: Wang, G., et al.
Published: (2010)
by: Wang, G., et al.
Published: (2010)
Mesoporous carbon with large pores as anode for Na-ion batteries
by: Liu, J., et al.
Published: (2014)
by: Liu, J., et al.
Published: (2014)
High yield and low-cost ball milling synthesis of nano-flake Si@SiO2 with small crystalline grains and abundant grain boundaries as a superior anode for Li-ion batteries
by: Hou, X., et al.
Published: (2015)
by: Hou, X., et al.
Published: (2015)
Facile synthesis and characterization of ZnFe2O4/α-Fe2O3 composite hollow nanospheres
by: Shen, Y., et al.
Published: (2011)
by: Shen, Y., et al.
Published: (2011)
Li4Ti5O12/Sn composite anodes for lithium-ion batteries: Synthesis and electrochemical performance
by: Cai, R., et al.
Published: (2010)
by: Cai, R., et al.
Published: (2010)
Non-aqueous hybrid supercapacitors fabricated with mesoporous TiO 2 microspheres and activated carbon electrodes with superior performance
by: Cai, Y., et al.
Published: (2014)
by: Cai, Y., et al.
Published: (2014)
Interweaved Si@C/CNTs&CNFs composites as anode materials for Li-ion batteries
by: Zhang, M., et al.
Published: (2014)
by: Zhang, M., et al.
Published: (2014)
Modified template synthesis and electrochemical performance of a Co3O4/mesoporous cathode for lithium–oxygen batteries
by: Wang, S., et al.
Published: (2015)
by: Wang, S., et al.
Published: (2015)
Adsorption-based synthesis of Co3O4/C composite anode for high performance lithium-ion batteries
by: Wang, S., et al.
Published: (2017)
by: Wang, S., et al.
Published: (2017)
A low resistance and stable lithium-garnet electrolyte interface enabled by a multifunctional anode additive for solid-state lithium batteries
by: Cao, Chencheng, et al.
Published: (2022)
by: Cao, Chencheng, et al.
Published: (2022)
Hierarchical carbon-coated acanthosphere-like Li4Ti5O12 microspheres for high-power lithium-ion batteries
by: Sha, Y., et al.
Published: (2016)
by: Sha, Y., et al.
Published: (2016)
Highly ordered mesoporous NiO anode material for lithium ion batteries with an excellent electrochemical performance
by: Liu, H., et al.
Published: (2011)
by: Liu, H., et al.
Published: (2011)
Functionalized nitrogen-doped carbon dot-modified yolk-shell ZnFe2O4 nanospheres with highly efficient light harvesting and superior catalytic activity
by: Li, J., et al.
Published: (2019)
by: Li, J., et al.
Published: (2019)
Morphology-dependent performance of Zn2GeO4 as a high-performance anode material for rechargeable lithium ion batteries
by: Feng, Y., et al.
Published: (2015)
by: Feng, Y., et al.
Published: (2015)
High performance porous iron oxide-carbon nanotube nanocomposite as an anode material for lithium-ion batteries
by: Lin, Q., et al.
Published: (2016)
by: Lin, Q., et al.
Published: (2016)
Porous TiO2(B)/anatase microspheres with hierarchical nano and microstructures for high-performance lithium-ion batteries
by: Wang, J., et al.
Published: (2013)
by: Wang, J., et al.
Published: (2013)
Superiority of gel polymer electrolytes as an application in lithium-ion batteries
by: Nurhasniza, Mamajan Khan, et al.
Published: (2022)
by: Nurhasniza, Mamajan Khan, et al.
Published: (2022)
Preparation and re-examination of Li4Ti4.85Al0.15O12 as anode material of lithium-ion battery
by: Cai, R., et al.
Published: (2011)
by: Cai, R., et al.
Published: (2011)
Capability of novel ZnFe2O4 nanotube arrays for visible-light induced degradation of 4-chlorophenol
by: Li, Xin Yong, et al.
Published: (2011)
by: Li, Xin Yong, et al.
Published: (2011)
In situ electrochemical creation of cobalt oxide nanosheets with favorable performance as a high tap density anode material for lithium-ion batteries
by: Lin, Q., et al.
Published: (2015)
by: Lin, Q., et al.
Published: (2015)
A top-down strategy for the synthesis of mesoporous Ba0.5Sr0.5Co0.8Fe0.2O3-δ as a cathode precursor for buffer layer-free deposition on stabilized zirconia electrolyte with a superior electrochemical performance
by: Su, C., et al.
Published: (2015)
by: Su, C., et al.
Published: (2015)
Solid lithium electrolyte-Li4Ti5O12 composites as anodes of lithium-ion batteries showing high-rate performance
by: Sha, Y., et al.
Published: (2013)
by: Sha, Y., et al.
Published: (2013)
Mesoporous Organosilica Hollow Microspheres with Hierarchical Structures on the Shell
by: Zhang, X., et al.
Published: (2013)
by: Zhang, X., et al.
Published: (2013)
Combustion-derived nanocrystalline LiMn2O4 as a promising cathode material for lithium-ion batteries
by: Gao, X., et al.
Published: (2015)
by: Gao, X., et al.
Published: (2015)
Fe@Ag nanoparticles decorated reduced graphene oxide as ultrahigh capacity anode material for lithium-ion battery
by: Atar, N., et al.
Published: (2015)
by: Atar, N., et al.
Published: (2015)
Recent progress in metal–organic frameworks for lithium–sulfur batteries
by: Zhong, Y., et al.
Published: (2018)
by: Zhong, Y., et al.
Published: (2018)
Ballmilling-assisted synthesis and electrochemical performance of LiFePO4/C for lithium-ion battery adopting citric acid as carbon precursor
by: Zhang, D., et al.
Published: (2009)
by: Zhang, D., et al.
Published: (2009)
Characterization Of Lithium Vanadium Oxide Anode With Agar Binder In Aqueous Rechargeable Lithium Ion Batteries
by: Soo, Kuan Lim
Published: (2017)
by: Soo, Kuan Lim
Published: (2017)
Highly flexible self-standing film electrode composed of mesoporous rutile TiO2/C nanofibers for lithium-ion batteries
by: Zhao, B., et al.
Published: (2012)
by: Zhao, B., et al.
Published: (2012)
Nitrogen-doped graphene guided formation of monodisperse microspheres of LiFePO4 nanoplates as the positive electrode material of lithium-ion batteries
by: Zhou, Yingke, et al.
Published: (2016)
by: Zhou, Yingke, et al.
Published: (2016)
Electrochemical Characterization Of Lithium Vanadium Oxide Anode With Agar Binder In Aqueous Rechargeable Lithium Ion Batteries
by: Lease, Jacqueline
Published: (2018)
by: Lease, Jacqueline
Published: (2018)
Appraisal of carbon-coated Li4Ti5O12 acanthospheres from optimized two-step hydrothermal synthesis as a superior anode for sodium-ion batteries
by: Sha, Y., et al.
Published: (2017)
by: Sha, Y., et al.
Published: (2017)
SnO2/reduced graphene oxide nanocomposite as anode material for lithium-ion batteries with enhanced cyclability.
by: Jiang, W., et al.
Published: (2016)
by: Jiang, W., et al.
Published: (2016)
Similar Items
-
Corncob-shaped ZnFe2O4/C nanostructures for improved anode rate and cycle performance in lithium-ion batteries
by: Mao, J., et al.
Published: (2015) -
Facile synthesis of nanocrystalline TiO2 mesoporous microspheres for lithium-ion batteries
by: Wang, J., et al.
Published: (2011) -
Three Strongly Coupled Allotropes in a Functionalized Porous All-Carbon Nanocomposite as a Superior Anode for Lithium-Ion Batteries
by: Deng, X., et al.
Published: (2016) -
Facile spray-drying/pyrolysis synthesis of intertwined SiO@CNFs&G composites as superior anode materials for Li-ion batteries
by: Hou, X., et al.
Published: (2014) -
Self-assembled mesoporous TiO2/carbon nanotube composite with a three-dimensional conducting nanonetwork as a high-rate anode material for lithium-ion battery
by: Wang, J., et al.
Published: (2014)