The effect of a tertiary bile acid, taurocholic acid, on the morphology and physical characteristics of microencapsulated probucol: potential applications in diabetes: a characterization study
In recent studies, we designed multi-compartmental microcapsules as a platform for the targeted oral delivery of lipophilic drugs in an animal model of type 2 diabetes (T2D). Probucol (PB) is a highly lipophilic, antihyperlipidemic drug with potential antidiabetic effects. PB has low bioavailability...
| Main Authors: | Mooranian, A., Negrulj, R., Arfuso, Frank, Al-Salami, Hani |
|---|---|
| Format: | Journal Article |
| Published: |
Springer Verlag
2015
|
| Online Access: | http://hdl.handle.net/20.500.11937/18799 |
Similar Items
An optimized probucol microencapsulated formulation integrating a secondary bile acid (deoxycholic acid) as a permeation enhancer
by: Mooranian, Armin, et al.
Published: (2014)
by: Mooranian, Armin, et al.
Published: (2014)
Diabetes development increased concentrations of the conjugated bile acid, taurocholic acid in serum, while treatment with microencapsulated-taurocholic acid exerted no hypoglycaemic effects
by: Mathavan, S., et al.
Published: (2017)
by: Mathavan, S., et al.
Published: (2017)
Novel artificial cell microencapsulation of probucol and bile acids in diabetes mellitus
by: Mooranian, Armin
Published: (2018)
by: Mooranian, Armin
Published: (2018)
Characterization of a novel bile acid-based delivery platform for microencapsulated pancreatic ß-cells.
by: Mooranian, Armin, et al.
Published: (2014)
by: Mooranian, Armin, et al.
Published: (2014)
Novel chenodeoxycholic acid-sodium alginate matrix in the microencapsulation of the potential antidiabetic drug, probucol. An in vitro study
by: Mooranian, A., et al.
Published: (2015)
by: Mooranian, A., et al.
Published: (2015)
Morphological, Stability, and Hypoglycemic Effects of New Gliclazide-Bile Acid Microcapsules for Type 1 Diabetes Treatment: the Microencapsulation of Anti-diabetics Using a Microcapsule-Stabilizing Bile Acid
by: Mathavan, S., et al.
Published: (2018)
by: Mathavan, S., et al.
Published: (2018)
Viability and topographical analysis of microencapsulated ß-cells exposed to a biotransformed tertiary bile acid: An ex vivo study
by: Mooranian, Armin, et al.
Published: (2016)
by: Mooranian, Armin, et al.
Published: (2016)
Eudragit®-based microcapsules of probucol with a gut-bacterial processed secondary bile acid
by: Mooranian, A., et al.
Published: (2018)
by: Mooranian, A., et al.
Published: (2018)
Potentials and Limitations of Bile Acids in Type 2 Diabetes Mellitus: Applications of Microencapsulation as a Novel Oral Delivery System
by: Negrulj, Rebecca, et al.
Published: (2013)
by: Negrulj, Rebecca, et al.
Published: (2013)
Advanced bile acid-based multi-compartmental microencapsulated pancreatic ß-cells integrating a polyelectrolyte-bile acid formulation, for diabetes treatment.
by: Mooranian, A., et al.
Published: (2014)
by: Mooranian, A., et al.
Published: (2014)
Swelling, mechanical strength, and release properties of probucol microcapsules with and without a bile acid, and their potential oral delivery in diabetes
by: Negrulj, R., et al.
Published: (2015)
by: Negrulj, R., et al.
Published: (2015)
Release and swelling studies of an innovative antidiabetic-bile acid microencapsulated formulation, as a novel targeted therapy for diabetes treatment
by: Mooranian, Armin, et al.
Published: (2015)
by: Mooranian, Armin, et al.
Published: (2015)
The impact of allylamine-bile acid combinations on cell delivery microcapsules in diabetes
by: Mooranian, Armin, et al.
Published: (2016)
by: Mooranian, Armin, et al.
Published: (2016)
Designing anti-diabetic ß-cells microcapsules using polystyrenic sulfonate, polyallylamine and a tertiary bile acid: Morphology, bioenergetics and cytokine analysis.
by: Mooranian, A., et al.
Published: (2016)
by: Mooranian, A., et al.
Published: (2016)
Pharmacological effects of nanoencapsulation of human-based dosing of probucol on ratio of secondary to primary bile acids in gut, during induction and progression of type 1 diabetes
by: Mooranian, Armin, et al.
Published: (2018)
by: Mooranian, Armin, et al.
Published: (2018)
The roles of bile acids and applications of microencapsulation technology in treating Type 1 diabetes mellitus
by: Woodhams, L., et al.
Published: (2017)
by: Woodhams, L., et al.
Published: (2017)
Release and swelling studies of an innovative antidiabetic-bile acid microencapsulated formulation, as a novel targeted therapy for diabetes treatment (vol 32, pg 151, 2014)
by: Mooranian, A., et al.
Published: (2015)
by: Mooranian, A., et al.
Published: (2015)
Novel artificial cell microencapsulation of a complex gliclazide-deoxycholic bile acid formulation: A Characterization Study
by: Mooranian, Armin, et al.
Published: (2014)
by: Mooranian, Armin, et al.
Published: (2014)
Microencapsulation as a novel delivery method for the potential antidiabetic drug, Probucol
by: Mooranian, Armin, et al.
Published: (2014)
by: Mooranian, Armin, et al.
Published: (2014)
Primary Bile Acid Chenodeoxycholic Acid-Based Microcapsules to Examine ß-cell Survival and the Inflammatory Response
by: Mooranian, A., et al.
Published: (2016)
by: Mooranian, A., et al.
Published: (2016)
Multicompartmental, multilayered probucol microcapsules for diabetes mellitus: Formulation characterization and effects on production of insulin and inflammation in a pancreatic ß-cell line
by: Mooranian, A., et al.
Published: (2015)
by: Mooranian, A., et al.
Published: (2015)
Novel multicompartmental bile acid-based microcapsules for pancreatic β-cell transplantation
by: Mooranian, A., et al.
Published: (2015)
by: Mooranian, A., et al.
Published: (2015)
Bile acids for probucol formulations applications in drug induced
ototoxicity
by: Ionescu, Corina Mihaela
Published: (2024)
by: Ionescu, Corina Mihaela
Published: (2024)
The incorporation of water-soluble gel matrix into bile acid-based microcapsules for the delivery of viable ß-cells of the pancreas, in diabetes treatment: biocompatibility and functionality studies.
by: Mooranian, A., et al.
Published: (2015)
by: Mooranian, A., et al.
Published: (2015)
An advanced microencapsulated system: a platform for optimized oral delivery of antidiabetic drug-bile acid formulations
by: Mooranian, A., et al.
Published: (2015)
by: Mooranian, A., et al.
Published: (2015)
Flow vibration-doubled concentric system coupled with low ratio amine to produce bile acid-macrocapsules of ß-cells
by: Mooranian, Armin, et al.
Published: (2016)
by: Mooranian, Armin, et al.
Published: (2016)
The applications of microencapsulated formulation of gliclazide and bile acids in Type-1 diabetes mellitus
by: Mathavan, Sangeetha
Published: (2017)
by: Mathavan, Sangeetha
Published: (2017)
The role of the bile acid chenodeoxycholic acid in the targeted oral delivery of the anti-diabetic drug gliclazide, and its applications in type 1 diabetes
by: Mathavan, S., et al.
Published: (2015)
by: Mathavan, S., et al.
Published: (2015)
Bile acid-based micro/nano capsules for the targeted oral delivery of probucol
by: Wagle, Susbin Raj
Published: (2020)
by: Wagle, Susbin Raj
Published: (2020)
Bile acids and probiotics could help treating diabetes
by: Calasan, J., et al.
Published: (2012)
by: Calasan, J., et al.
Published: (2012)
New biotechnological microencapsulating methodology utilizing individualized gradient-screened jet laminar flow techniques for pancreatic ß-cell delivery: bile acids support cell energy-generating mechanisms
by: Mooranian, A., et al.
Published: (2017)
by: Mooranian, A., et al.
Published: (2017)
NOVEL MULTICOMPARTMENTAL BILE ACID-BASED MICROCAPSULES FOR PANCREATIC beta-CELL TRANSPLANTATION
by: Mooranian, A., et al.
Published: (2015)
by: Mooranian, A., et al.
Published: (2015)
Probucol Release from Novel Multicompartmental Microcapsules for the Oral Targeted Delivery in Type 2 Diabetes
by: Mooranian, Armin, et al.
Published: (2014)
by: Mooranian, Armin, et al.
Published: (2014)
A comprehensive study of novel microcapsules incorporating gliclazide and a permeation enhancing bile acid: hypoglycemic effect in an animal model of Type-1 diabetes
by: Mathavan, Sangeetha, et al.
Published: (2015)
by: Mathavan, Sangeetha, et al.
Published: (2015)
An in vivo pharmacological study: Variation in tissue-accumulation for the drug probucol as the result of targeted microtechnology and matrix-acrylic acid optimization and stabilization techniques
by: Mooranian, Armin, et al.
Published: (2019)
by: Mooranian, Armin, et al.
Published: (2019)
Alginate-combined cholic acid increased insulin secretion of microencapsulated mouse cloned pancreatic ß cells
by: Mooranian, A., et al.
Published: (2017)
by: Mooranian, A., et al.
Published: (2017)
Electrokinetic potential-stabilization by bile acid-microencapsulating formulation of pancreatic ß-cells cultured in high ratio poly-L-ornithine-gel hydrogel colloidal dispersion: applications in cell-biomaterials, tissue engineering and biotechnological applications
by: Mooranian, A., et al.
Published: (2017)
by: Mooranian, A., et al.
Published: (2017)
Alginate-deoxycholic Acid Interaction and Its Impact on Pancreatic ?-Cells and Insulin Secretion and Potential Treatment of Type 1 Diabetes
by: Mooranian, Armin, et al.
Published: (2016)
by: Mooranian, Armin, et al.
Published: (2016)
Probiotics decreased the bioavailability of the bile acid analog, monoketocholic acid, when coadministered with gliclazide, in healthy but not diabetic rats
by: Al-Salami, Hani, et al.
Published: (2012)
by: Al-Salami, Hani, et al.
Published: (2012)
Long-Term Supplementation of Microencapsulated ursodeoxycholic Acid Prevents Hypertension in a Mouse Model of Insulin Resistance:
by: Al-Salami, Hani, et al.
Published: (2016)
by: Al-Salami, Hani, et al.
Published: (2016)
Similar Items
-
An optimized probucol microencapsulated formulation integrating a secondary bile acid (deoxycholic acid) as a permeation enhancer
by: Mooranian, Armin, et al.
Published: (2014) -
Diabetes development increased concentrations of the conjugated bile acid, taurocholic acid in serum, while treatment with microencapsulated-taurocholic acid exerted no hypoglycaemic effects
by: Mathavan, S., et al.
Published: (2017) -
Novel artificial cell microencapsulation of probucol and bile acids in diabetes mellitus
by: Mooranian, Armin
Published: (2018) -
Characterization of a novel bile acid-based delivery platform for microencapsulated pancreatic ß-cells.
by: Mooranian, Armin, et al.
Published: (2014) -
Novel chenodeoxycholic acid-sodium alginate matrix in the microencapsulation of the potential antidiabetic drug, probucol. An in vitro study
by: Mooranian, A., et al.
Published: (2015)