Smoothing of wind farm output by prediction and supervisory-control-unit- based FESS

This paper presents a supervisory control unit (SCU) combined with short-term ahead wind speed prediction for proper and effective management of the stored energy in a small capacity flywheel energy storage system (FESS) which is used to mitigate the output power fluctuations of an aggregated wind f...

Full description

Bibliographic Details
Main Authors: Islam, F., Al-Durra, A., Muyeen, S.M.
Format: Journal Article
Published: The Institute of Electrical and Electronic Engineers (IEEE) 2013
Online Access:http://hdl.handle.net/20.500.11937/18118
_version_ 1848749652938063872
author Islam, F.
Al-Durra, A.
Muyeen, S.M.
author_facet Islam, F.
Al-Durra, A.
Muyeen, S.M.
author_sort Islam, F.
building Curtin Institutional Repository
collection Online Access
description This paper presents a supervisory control unit (SCU) combined with short-term ahead wind speed prediction for proper and effective management of the stored energy in a small capacity flywheel energy storage system (FESS) which is used to mitigate the output power fluctuations of an aggregated wind farm. Wind speed prediction is critical for a wind energy conversion system since it may greatly influence the issues related to effective energy management, dynamic control of wind turbine, and improvement of the overall efficiency of the power generation system. In this study, a wind speed prediction model is developed by artificial neural network (ANN) which has advantages over the conventional prediction schemes including data error tolerance and ease in adaptability. The proposed SCU-based control would help to reduce the size of the energy storage system for minimizing wind power fluctuation taking the advantage of prediction scheme. The model for prediction using ANN is developed in MATLAB/Simulink and interfaced with PSCAD/EMTDC. Effectiveness of the proposed control system is illustrated using real wind speed data in various operating conditions.
first_indexed 2025-11-14T07:24:21Z
format Journal Article
id curtin-20.500.11937-18118
institution Curtin University Malaysia
institution_category Local University
last_indexed 2025-11-14T07:24:21Z
publishDate 2013
publisher The Institute of Electrical and Electronic Engineers (IEEE)
recordtype eprints
repository_type Digital Repository
spelling curtin-20.500.11937-181182017-09-13T16:10:40Z Smoothing of wind farm output by prediction and supervisory-control-unit- based FESS Islam, F. Al-Durra, A. Muyeen, S.M. This paper presents a supervisory control unit (SCU) combined with short-term ahead wind speed prediction for proper and effective management of the stored energy in a small capacity flywheel energy storage system (FESS) which is used to mitigate the output power fluctuations of an aggregated wind farm. Wind speed prediction is critical for a wind energy conversion system since it may greatly influence the issues related to effective energy management, dynamic control of wind turbine, and improvement of the overall efficiency of the power generation system. In this study, a wind speed prediction model is developed by artificial neural network (ANN) which has advantages over the conventional prediction schemes including data error tolerance and ease in adaptability. The proposed SCU-based control would help to reduce the size of the energy storage system for minimizing wind power fluctuation taking the advantage of prediction scheme. The model for prediction using ANN is developed in MATLAB/Simulink and interfaced with PSCAD/EMTDC. Effectiveness of the proposed control system is illustrated using real wind speed data in various operating conditions. 2013 Journal Article http://hdl.handle.net/20.500.11937/18118 10.1109/TSTE.2013.2256944 The Institute of Electrical and Electronic Engineers (IEEE) fulltext
spellingShingle Islam, F.
Al-Durra, A.
Muyeen, S.M.
Smoothing of wind farm output by prediction and supervisory-control-unit- based FESS
title Smoothing of wind farm output by prediction and supervisory-control-unit- based FESS
title_full Smoothing of wind farm output by prediction and supervisory-control-unit- based FESS
title_fullStr Smoothing of wind farm output by prediction and supervisory-control-unit- based FESS
title_full_unstemmed Smoothing of wind farm output by prediction and supervisory-control-unit- based FESS
title_short Smoothing of wind farm output by prediction and supervisory-control-unit- based FESS
title_sort smoothing of wind farm output by prediction and supervisory-control-unit- based fess
url http://hdl.handle.net/20.500.11937/18118