A unified method for optimal arbitrary pole placement
We consider the classic problem of pole placement by state feedback. We offer an eigenstructure assignment algorithm to obtain a novel parametric form for the pole-placing feedback matrix that can deliver any set of desired closed-loop eigenvalues, with any desired multiplicities. This parametric fo...
| Main Authors: | , , , |
|---|---|
| Format: | Journal Article |
| Published: |
Pergamon
2014
|
| Subjects: | |
| Online Access: | http://hdl.handle.net/20.500.11937/17653 |
| Summary: | We consider the classic problem of pole placement by state feedback. We offer an eigenstructure assignment algorithm to obtain a novel parametric form for the pole-placing feedback matrix that can deliver any set of desired closed-loop eigenvalues, with any desired multiplicities. This parametric formula is then exploited to introduce an unconstrained nonlinear optimisation algorithm to obtain a feedback matrix that delivers the desired pole placement with optimal robustness and minimum gain. Lastly we compare the performance of our method against several others from the recent literature. |
|---|