Fullerene-intercalated Graphene Nano-containers — Mechanism of Argon Adsorption and High-pressure CH4 and CO2 Storage Capacities

Using GCMC simulations, we discuss the mechanism of argon adsorption onto intercalated graphene nano-containers (NanoBuds). The mechanism is related to the shapes of the high-resolution aS-plots. Next, we have tested the applicability of these materials to the storage of methane and carbon dioxide....

Full description

Bibliographic Details
Main Authors: Terzyk, A., Furmaniak, S., Gauden, P., Kowalczyk, Poitr
Format: Journal Article
Published: Multi-Science Publishing Co. Ltd. 2009
Subjects:
Online Access:http://hdl.handle.net/20.500.11937/17289
Description
Summary:Using GCMC simulations, we discuss the mechanism of argon adsorption onto intercalated graphene nano-containers (NanoBuds). The mechanism is related to the shapes of the high-resolution aS-plots. Next, we have tested the applicability of these materials to the storage of methane and carbon dioxide. We show that intercalation improves the storage, especially in the range of low pressures where the effect of volume does not dominate. The results obtained may be of interest in the design of new carbon materials.