Automatic Modulation Recognition of MPSK Signals Using Constellation Rotation and its 4-th Order Cumulant
We derive and analyze a new pattern recognition approach for automatic modulation recognition of MPSK (2, 4, and 8) signals in broad-band Gaussian noise. Presented method is based on constellation rotation of the received symbols, and a 4th order cumulant of a 1D distribution of the signal's in...
| Main Authors: | , |
|---|---|
| Format: | Journal Article |
| Published: |
Academic Press
2005
|
| Online Access: | http://hdl.handle.net/20.500.11937/17244 |
| Summary: | We derive and analyze a new pattern recognition approach for automatic modulation recognition of MPSK (2, 4, and 8) signals in broad-band Gaussian noise. Presented method is based on constellation rotation of the received symbols, and a 4th order cumulant of a 1D distribution of the signal's in-phase component. Using Fourier series expansion of this cumulant as a function of the rotation angle, we extract invariant features which are then used in a neural classifier. Discrimination power of the proposed set of features is verified through extensive simulations, and the performance of the suggested algorithm is compared to the maximum-likelihood (ML) classifiers. Corresponding results show that our technique is comparable to the coherent ML classifier and outperforms the non-coherent pseudo-ML method for all considered signal-to-noise ratio (SNR) without the computational overhead of the latter. |
|---|