A modified dynamic evolving neural-fuzzy approach to modeling customer satisfaction for affective design
Affective design is an important aspect of product development to achieve a competitive edge in the marketplace. A neural-fuzzy network approach has been attempted recently to model customer satisfaction for affective design and it has been proved to be an effective one to deal with the fuzziness an...
| Main Authors: | , , , , |
|---|---|
| Format: | Journal Article |
| Published: |
Hindawi Publishing Corporation
2013
|
| Online Access: | http://hdl.handle.net/20.500.11937/16727 |
| _version_ | 1848749259198824448 |
|---|---|
| author | Kwong, C. Fung, K. Jiang, H. Chan, Kit Yan Siu, K. |
| author_facet | Kwong, C. Fung, K. Jiang, H. Chan, Kit Yan Siu, K. |
| author_sort | Kwong, C. |
| building | Curtin Institutional Repository |
| collection | Online Access |
| description | Affective design is an important aspect of product development to achieve a competitive edge in the marketplace. A neural-fuzzy network approach has been attempted recently to model customer satisfaction for affective design and it has been proved to be an effective one to deal with the fuzziness and non-linearity of the modeling as well as generate explicit customer satisfaction models. However, such an approach to modeling customer satisfaction has two limitations. First, it is not suitable for the modeling problems which involve a large number of inputs. Second, it cannot adapt to new data sets, given that its structure is fixed once it has been developed. In this paper, a modified dynamic evolving neural-fuzzy approach is proposed to address the above mentioned limitations. A case study on the affective design of mobile phones was conducted to illustrate the effectiveness of the proposed methodology. Validation tests were conducted and the test results indicated that: (1) the conventional Adaptive Neuro-Fuzzy Inference System (ANFIS) failed to run due to a large number of inputs; (2) the proposed dynamic neural-fuzzy model outperforms the subtractive clustering-based ANFIS model and fuzzy c-means clustering-based ANFIS model in terms of their modeling accuracy and computational effort. |
| first_indexed | 2025-11-14T07:18:05Z |
| format | Journal Article |
| id | curtin-20.500.11937-16727 |
| institution | Curtin University Malaysia |
| institution_category | Local University |
| last_indexed | 2025-11-14T07:18:05Z |
| publishDate | 2013 |
| publisher | Hindawi Publishing Corporation |
| recordtype | eprints |
| repository_type | Digital Repository |
| spelling | curtin-20.500.11937-167272017-09-13T15:42:21Z A modified dynamic evolving neural-fuzzy approach to modeling customer satisfaction for affective design Kwong, C. Fung, K. Jiang, H. Chan, Kit Yan Siu, K. Affective design is an important aspect of product development to achieve a competitive edge in the marketplace. A neural-fuzzy network approach has been attempted recently to model customer satisfaction for affective design and it has been proved to be an effective one to deal with the fuzziness and non-linearity of the modeling as well as generate explicit customer satisfaction models. However, such an approach to modeling customer satisfaction has two limitations. First, it is not suitable for the modeling problems which involve a large number of inputs. Second, it cannot adapt to new data sets, given that its structure is fixed once it has been developed. In this paper, a modified dynamic evolving neural-fuzzy approach is proposed to address the above mentioned limitations. A case study on the affective design of mobile phones was conducted to illustrate the effectiveness of the proposed methodology. Validation tests were conducted and the test results indicated that: (1) the conventional Adaptive Neuro-Fuzzy Inference System (ANFIS) failed to run due to a large number of inputs; (2) the proposed dynamic neural-fuzzy model outperforms the subtractive clustering-based ANFIS model and fuzzy c-means clustering-based ANFIS model in terms of their modeling accuracy and computational effort. 2013 Journal Article http://hdl.handle.net/20.500.11937/16727 10.1155/2013/636948 Hindawi Publishing Corporation fulltext |
| spellingShingle | Kwong, C. Fung, K. Jiang, H. Chan, Kit Yan Siu, K. A modified dynamic evolving neural-fuzzy approach to modeling customer satisfaction for affective design |
| title | A modified dynamic evolving neural-fuzzy approach to modeling customer satisfaction for affective design |
| title_full | A modified dynamic evolving neural-fuzzy approach to modeling customer satisfaction for affective design |
| title_fullStr | A modified dynamic evolving neural-fuzzy approach to modeling customer satisfaction for affective design |
| title_full_unstemmed | A modified dynamic evolving neural-fuzzy approach to modeling customer satisfaction for affective design |
| title_short | A modified dynamic evolving neural-fuzzy approach to modeling customer satisfaction for affective design |
| title_sort | modified dynamic evolving neural-fuzzy approach to modeling customer satisfaction for affective design |
| url | http://hdl.handle.net/20.500.11937/16727 |