Instability of Standing Wave for the Klein–Gordon–Hartree Equation

The instability property of the standing wave u ω (t, x) = eiωt φ(x) for the Klein-Gordon-Hartree equation ∂ 2 u ∂t 2 −Δu+u− (|x| −γ *|u| 2 )u = 0, x ∈R N , 0<γ<min{N,4} is investigated. For the case N ≥ 3 and ω 2 <2 N+4−γ, it is shown that the standing wave eiωt φ(X) is strongly unstable...

Full description

Bibliographic Details
Main Authors: Li, X., Zhang, J., Wu, Yong Hong
Format: Journal Article
Published: Springer 2014
Subjects:
Online Access:http://hdl.handle.net/20.500.11937/16146
_version_ 1848749091388915712
author Li, X.
Zhang, J.
Wu, Yong Hong
author_facet Li, X.
Zhang, J.
Wu, Yong Hong
author_sort Li, X.
building Curtin Institutional Repository
collection Online Access
description The instability property of the standing wave u ω (t, x) = eiωt φ(x) for the Klein-Gordon-Hartree equation ∂ 2 u ∂t 2 −Δu+u− (|x| −γ *|u| 2 )u = 0, x ∈R N , 0<γ<min{N,4} is investigated. For the case N ≥ 3 and ω 2 <2 N+4−γ, it is shown that the standing wave eiωt φ(X) is strongly unstable by blow-up in finite time.
first_indexed 2025-11-14T07:15:25Z
format Journal Article
id curtin-20.500.11937-16146
institution Curtin University Malaysia
institution_category Local University
last_indexed 2025-11-14T07:15:25Z
publishDate 2014
publisher Springer
recordtype eprints
repository_type Digital Repository
spelling curtin-20.500.11937-161462017-09-13T15:04:06Z Instability of Standing Wave for the Klein–Gordon–Hartree Equation Li, X. Zhang, J. Wu, Yong Hong 35A15 standing waves 35L70 35B35 strong instability Klein-Gordon-Hartree equation The instability property of the standing wave u ω (t, x) = eiωt φ(x) for the Klein-Gordon-Hartree equation ∂ 2 u ∂t 2 −Δu+u− (|x| −γ *|u| 2 )u = 0, x ∈R N , 0<γ<min{N,4} is investigated. For the case N ≥ 3 and ω 2 <2 N+4−γ, it is shown that the standing wave eiωt φ(X) is strongly unstable by blow-up in finite time. 2014 Journal Article http://hdl.handle.net/20.500.11937/16146 10.1007/s10114-014-2399-x Springer restricted
spellingShingle 35A15
standing waves
35L70
35B35
strong instability
Klein-Gordon-Hartree equation
Li, X.
Zhang, J.
Wu, Yong Hong
Instability of Standing Wave for the Klein–Gordon–Hartree Equation
title Instability of Standing Wave for the Klein–Gordon–Hartree Equation
title_full Instability of Standing Wave for the Klein–Gordon–Hartree Equation
title_fullStr Instability of Standing Wave for the Klein–Gordon–Hartree Equation
title_full_unstemmed Instability of Standing Wave for the Klein–Gordon–Hartree Equation
title_short Instability of Standing Wave for the Klein–Gordon–Hartree Equation
title_sort instability of standing wave for the klein–gordon–hartree equation
topic 35A15
standing waves
35L70
35B35
strong instability
Klein-Gordon-Hartree equation
url http://hdl.handle.net/20.500.11937/16146