Prediction of coal hydrogen content for combustion control in power utility using neural network approach

Bibliographic Details
Main Authors: Saptoro, Agus, Yao, Hong Mei, Tade, Moses, Vuthaluru, Hari
Format: Journal Article
Published: ELSEVIER 2008
Online Access:http://hdl.handle.net/20.500.11937/15928
_version_ 1848749028854988800
author Saptoro, Agus
Yao, Hong Mei
Tade, Moses
Vuthaluru, Hari
author_facet Saptoro, Agus
Yao, Hong Mei
Tade, Moses
Vuthaluru, Hari
author_sort Saptoro, Agus
building Curtin Institutional Repository
collection Online Access
first_indexed 2025-11-14T07:14:26Z
format Journal Article
id curtin-20.500.11937-15928
institution Curtin University Malaysia
institution_category Local University
last_indexed 2025-11-14T07:14:26Z
publishDate 2008
publisher ELSEVIER
recordtype eprints
repository_type Digital Repository
spelling curtin-20.500.11937-159282017-09-13T14:08:01Z Prediction of coal hydrogen content for combustion control in power utility using neural network approach Saptoro, Agus Yao, Hong Mei Tade, Moses Vuthaluru, Hari 2008 Journal Article http://hdl.handle.net/20.500.11937/15928 10.1016/j.chemolab.2008.07.007 ELSEVIER restricted
spellingShingle Saptoro, Agus
Yao, Hong Mei
Tade, Moses
Vuthaluru, Hari
Prediction of coal hydrogen content for combustion control in power utility using neural network approach
title Prediction of coal hydrogen content for combustion control in power utility using neural network approach
title_full Prediction of coal hydrogen content for combustion control in power utility using neural network approach
title_fullStr Prediction of coal hydrogen content for combustion control in power utility using neural network approach
title_full_unstemmed Prediction of coal hydrogen content for combustion control in power utility using neural network approach
title_short Prediction of coal hydrogen content for combustion control in power utility using neural network approach
title_sort prediction of coal hydrogen content for combustion control in power utility using neural network approach
url http://hdl.handle.net/20.500.11937/15928