A kinetic model for diffusion and chemical reaction of silicon anode lithiation in lithium ion batteries
In this paper, a kinetic model is proposed that combines lithium ion diffusion through a lithiated phase with chemical reaction at the interface between lithiated amorphous and crystalline silicon. It is found out that a dimensionless parameter, relating the concentration distribution of lithium ion...
| Main Authors: | Xie, Z., Ma, Z., Wang, Y., Zhou, Y., Lu, Chunsheng |
|---|---|
| Format: | Journal Article |
| Published: |
Royal Society of Chemistry
2016
|
| Online Access: | http://hdl.handle.net/20.500.11937/15280 |
Similar Items
Modeling diffusion–induced stress on two-phase lithiation in lithium-ion batteries
by: Wu, H., et al.
Published: (2018)
by: Wu, H., et al.
Published: (2018)
Anisotropic mechanical properties of Si anodes in a lithiation process of lithium-ion batteries
by: Wang, D., et al.
Published: (2018)
by: Wang, D., et al.
Published: (2018)
A constitutive model coupling irradiation with two-phase lithiation for lithium-ion battery electrodes
by: Wu, H., et al.
Published: (2019)
by: Wu, H., et al.
Published: (2019)
Softening by electrochemical reaction-induced dislocations in lithium-ion batteries
by: Ma, Z., et al.
Published: (2017)
by: Ma, Z., et al.
Published: (2017)
Effects of size and concentration on diffusion-induced stress in lithium-ion batteries
by: Ma, Z., et al.
Published: (2016)
by: Ma, Z., et al.
Published: (2016)
A twins-structural Sn@C core–shell composite as anode materials for lithium-ion batteries
by: Wang, Y., et al.
Published: (2016)
by: Wang, Y., et al.
Published: (2016)
Double effect of electrochemical reaction and substrateon hardness in electrodes of lithium-ion batteries
by: Wang, Y., et al.
Published: (2016)
by: Wang, Y., et al.
Published: (2016)
Advanced amorphous nanoporous stannous oxide composite with carbon nanotubes as anode materials for lithium-ion batteries
by: Jiang, W., et al.
Published: (2014)
by: Jiang, W., et al.
Published: (2014)
SnO2/reduced graphene oxide nanocomposite as anode material for lithium-ion batteries with enhanced cyclability.
by: Jiang, W., et al.
Published: (2016)
by: Jiang, W., et al.
Published: (2016)
Failure prediction of high-capacity electrode materials in lithium-ion batteries
by: Wang, C., et al.
Published: (2016)
by: Wang, C., et al.
Published: (2016)
An electrochemical-irradiated plasticity model for metallic electrodes in lithium-ion batteries
by: Ma, Z., et al.
Published: (2017)
by: Ma, Z., et al.
Published: (2017)
First-Principles Study on the Mechanical Properties of Lithiated Sn Anode Materials for Li-Ion Batteries
by: Zhang, Panpan
Published: (2019)
by: Zhang, Panpan
Published: (2019)
Sandwich-like CNTs@SnO2/SnO/Sn anodes on three-dimensional Ni foam substrate for lithium ion batteries
by: Zhang, J., et al.
Published: (2016)
by: Zhang, J., et al.
Published: (2016)
Failure modes of hollow core–shell structural active materials during the lithiation–delithiation process
by: Ma, Z., et al.
Published: (2015)
by: Ma, Z., et al.
Published: (2015)
Synthesis and characterization of lithiated mixed metal oxides for lithium ion rechargeable batteries / Tan Seng Gee.
by: Tan, Seng Gee
Published: (2001)
by: Tan, Seng Gee
Published: (2001)
Stress-strain relationships of LixSn alloys for lithium ion batteries
by: Gao, X., et al.
Published: (2016)
by: Gao, X., et al.
Published: (2016)
Preparation and characterization of lithiated cathode materials for lithium batteries / Shanti Navaratnam
by: Navaratnam, Shanti
Published: (2001)
by: Navaratnam, Shanti
Published: (2001)
Si/C composite lithium-ion battery anodes synthesized from coarse silicon and citric acid through combined ball milling and thermal pyrolysis
by: Gu, P., et al.
Published: (2010)
by: Gu, P., et al.
Published: (2010)
Mechanical properties of Li-Sn alloys for Li-ion battery anodes: A first-principles perspective
by: Zhang, P., et al.
Published: (2016)
by: Zhang, P., et al.
Published: (2016)
Coupled electrochemical-mechanical modeling with strain gradient plasticity for lithium-ion battery electrodes
by: Wang, Y., et al.
Published: (2021)
by: Wang, Y., et al.
Published: (2021)
A chemo-mechanical model coupled with thermal effect on the hollow core–shell electrodes in lithium-ion batteries
by: Hu, B., et al.
Published: (2017)
by: Hu, B., et al.
Published: (2017)
Silicon decorated graphene nanoplates modified anode and MnO2 interlayer as a multifunctional polysulfides barrier for advanced pre-lithiation silicon-sulfur batteries
by: Aslfattahi, Navid, et al.
by: Aslfattahi, Navid, et al.
Characterization Of Lithium Vanadium Oxide Anode With Agar Binder In Aqueous Rechargeable Lithium Ion Batteries
by: Soo, Kuan Lim
Published: (2017)
by: Soo, Kuan Lim
Published: (2017)
Electrospun ternary composite metal oxide fibers as an anode for lithium-ion batteries
by: Ling, Jin Kiong, et al.
Published: (2022)
by: Ling, Jin Kiong, et al.
Published: (2022)
Lithiation-induced interfacial failure of electrode-collector: A first-principles study
by: Zhang, P., et al.
Published: (2019)
by: Zhang, P., et al.
Published: (2019)
Electrochemical Characterization Of Lithium Vanadium Oxide Anode With Agar Binder In Aqueous Rechargeable Lithium Ion Batteries
by: Lease, Jacqueline
Published: (2018)
by: Lease, Jacqueline
Published: (2018)
Optimal design of hollow core-shell structural active materials for lithium ion batteries
by: Jiang, W., et al.
Published: (2015)
by: Jiang, W., et al.
Published: (2015)
High performance porous iron oxide-carbon nanotube nanocomposite as an anode material for lithium-ion batteries
by: Lin, Q., et al.
Published: (2016)
by: Lin, Q., et al.
Published: (2016)
Influences of plasma treatment parameters on the hydrophobicity of cathode and anode materials from spent lithium-ion batteries.
by: Ren, Xibing, et al.
Published: (2024)
by: Ren, Xibing, et al.
Published: (2024)
Sulfur-nickel foam as cathode materials for lithium-sulfur batteries
by: Cheng, J., et al.
Published: (2015)
by: Cheng, J., et al.
Published: (2015)
Solid lithium electrolyte-Li4Ti5O12 composites as anodes of lithium-ion batteries showing high-rate performance
by: Sha, Y., et al.
Published: (2013)
by: Sha, Y., et al.
Published: (2013)
Optimizing graphene anode performance in lithium-ion batteries: investigating the effects of diverse thermal conditions
by: Ng, Zen Ian, et al.
Published: (2024)
by: Ng, Zen Ian, et al.
Published: (2024)
Recent progress on sodium ion batteries: Potential high-performance anodes
by: Li, L., et al.
Published: (2018)
by: Li, L., et al.
Published: (2018)
Adsorption-based synthesis of Co3O4/C composite anode for high performance lithium-ion batteries
by: Wang, S., et al.
Published: (2017)
by: Wang, S., et al.
Published: (2017)
Structure and defect strategy towards high-performance copper niobate as anode for Li-ion batteries
by: Su, M., et al.
Published: (2023)
by: Su, M., et al.
Published: (2023)
Three Strongly Coupled Allotropes in a Functionalized Porous All-Carbon Nanocomposite as a Superior Anode for Lithium-Ion Batteries
by: Deng, X., et al.
Published: (2016)
by: Deng, X., et al.
Published: (2016)
Investigations on the Influence of Sm3+Ion on the Nano TiO2 Matrix as the Anode Material for Lithium Ion Batteries
by: Abhilash, K. P., et al.
Published: (2017)
by: Abhilash, K. P., et al.
Published: (2017)
Understanding degradation in lithium-ion and lithium-air batteries
by: McNulty, Rory
Published: (2023)
by: McNulty, Rory
Published: (2023)
Highly ordered mesoporous NiO anode material for lithium ion batteries with an excellent electrochemical performance
by: Liu, H., et al.
Published: (2011)
by: Liu, H., et al.
Published: (2011)
A ternary sulphonium composite Cu3BiS3/S as cathode materials for lithium–sulfur batteries
by: Gao, X., et al.
Published: (2016)
by: Gao, X., et al.
Published: (2016)
Similar Items
-
Modeling diffusion–induced stress on two-phase lithiation in lithium-ion batteries
by: Wu, H., et al.
Published: (2018) -
Anisotropic mechanical properties of Si anodes in a lithiation process of lithium-ion batteries
by: Wang, D., et al.
Published: (2018) -
A constitutive model coupling irradiation with two-phase lithiation for lithium-ion battery electrodes
by: Wu, H., et al.
Published: (2019) -
Softening by electrochemical reaction-induced dislocations in lithium-ion batteries
by: Ma, Z., et al.
Published: (2017) -
Effects of size and concentration on diffusion-induced stress in lithium-ion batteries
by: Ma, Z., et al.
Published: (2016)