An incremental EM-based learning approach for on-line prediction of hospital resource utilization

Objective: Inpatient length of stay (LOS) is an important measure of hospital activity, health care resource consumption, and patient acuity. This research work aims at developing an incremental expectation maximization (EM) based learning approach on mixture of experts (ME) system for on-line predi...

Full description

Bibliographic Details
Main Authors: Ng, Shu, Mclachlan, G., Lee, Andy
Format: Journal Article
Published: Elsevier Science 2006
Online Access:http://hdl.handle.net/20.500.11937/14954
_version_ 1848748761190236160
author Ng, Shu
Mclachlan, G.
Lee, Andy
author_facet Ng, Shu
Mclachlan, G.
Lee, Andy
author_sort Ng, Shu
building Curtin Institutional Repository
collection Online Access
description Objective: Inpatient length of stay (LOS) is an important measure of hospital activity, health care resource consumption, and patient acuity. This research work aims at developing an incremental expectation maximization (EM) based learning approach on mixture of experts (ME) system for on-line prediction of LOS. The use of a batch-mode learning process in most existing artificial neural networks to predict LOS is unrealistic, as the data become available over time and their pattern change dynamically. In contrast, an on-line process is capable of providing an output whenever a new datum becomes available. This on-the-spot information is therefore more useful and practical for making decisions, especially when one deals with a tremendous amount of data. Methods and material: The proposed approach is illustrated using a real example of gastroenteritis LOS data. The data set was extracted from a retrospective cohort study on all infants born in 1995–1997 and their subsequent admissions for gastroenteritis. The total number of admissions in this data set was n=692. Linked hospitalization records of the cohort were retrieved retrospectively to derive the outcome measure, patient demographics, and associated co-morbidities information. A comparative study of the incremental learning and the batch-mode learning algorithms is considered. The performances of the learning algorithms are compared based on the mean absolute difference (MAD) between the predictions and the actual LOS, and the proportion of predictions with MAD ≤ 1 day (Prop(MA≤1)). The significance of the comparison is assessed through a regression analysis.Results: The incremental learning algorithm provides better on-line prediction of LOS when the system has gained sufficient training from more examples (MAD=1.77days and Prop(MAD ≤ 1) =54.3%), compared to that using the batch-mode learning. The regression analysis indicates a significant decrease of MAD (p - value=0.063) and a significant (p - value=0.044) increase of Prop(MAD≤1) with the incremental learning algorithm. Conclusion: The incremental learning feature and the self-adaptive model-selection ability of the ME network enhance its effective adaptation to non-stationary LOS data. It is demonstrated that the incremental learning algorithm outperforms the batch-mode algorithm in the on-line prediction of LOS
first_indexed 2025-11-14T07:10:10Z
format Journal Article
id curtin-20.500.11937-14954
institution Curtin University Malaysia
institution_category Local University
last_indexed 2025-11-14T07:10:10Z
publishDate 2006
publisher Elsevier Science
recordtype eprints
repository_type Digital Repository
spelling curtin-20.500.11937-149542017-09-13T15:02:12Z An incremental EM-based learning approach for on-line prediction of hospital resource utilization Ng, Shu Mclachlan, G. Lee, Andy Objective: Inpatient length of stay (LOS) is an important measure of hospital activity, health care resource consumption, and patient acuity. This research work aims at developing an incremental expectation maximization (EM) based learning approach on mixture of experts (ME) system for on-line prediction of LOS. The use of a batch-mode learning process in most existing artificial neural networks to predict LOS is unrealistic, as the data become available over time and their pattern change dynamically. In contrast, an on-line process is capable of providing an output whenever a new datum becomes available. This on-the-spot information is therefore more useful and practical for making decisions, especially when one deals with a tremendous amount of data. Methods and material: The proposed approach is illustrated using a real example of gastroenteritis LOS data. The data set was extracted from a retrospective cohort study on all infants born in 1995–1997 and their subsequent admissions for gastroenteritis. The total number of admissions in this data set was n=692. Linked hospitalization records of the cohort were retrieved retrospectively to derive the outcome measure, patient demographics, and associated co-morbidities information. A comparative study of the incremental learning and the batch-mode learning algorithms is considered. The performances of the learning algorithms are compared based on the mean absolute difference (MAD) between the predictions and the actual LOS, and the proportion of predictions with MAD ≤ 1 day (Prop(MA≤1)). The significance of the comparison is assessed through a regression analysis.Results: The incremental learning algorithm provides better on-line prediction of LOS when the system has gained sufficient training from more examples (MAD=1.77days and Prop(MAD ≤ 1) =54.3%), compared to that using the batch-mode learning. The regression analysis indicates a significant decrease of MAD (p - value=0.063) and a significant (p - value=0.044) increase of Prop(MAD≤1) with the incremental learning algorithm. Conclusion: The incremental learning feature and the self-adaptive model-selection ability of the ME network enhance its effective adaptation to non-stationary LOS data. It is demonstrated that the incremental learning algorithm outperforms the batch-mode algorithm in the on-line prediction of LOS 2006 Journal Article http://hdl.handle.net/20.500.11937/14954 10.1016/j.artmed.2005.07.003 Elsevier Science restricted
spellingShingle Ng, Shu
Mclachlan, G.
Lee, Andy
An incremental EM-based learning approach for on-line prediction of hospital resource utilization
title An incremental EM-based learning approach for on-line prediction of hospital resource utilization
title_full An incremental EM-based learning approach for on-line prediction of hospital resource utilization
title_fullStr An incremental EM-based learning approach for on-line prediction of hospital resource utilization
title_full_unstemmed An incremental EM-based learning approach for on-line prediction of hospital resource utilization
title_short An incremental EM-based learning approach for on-line prediction of hospital resource utilization
title_sort incremental em-based learning approach for on-line prediction of hospital resource utilization
url http://hdl.handle.net/20.500.11937/14954