Fluid substitution in shaley sediment using effective porosity

The traditional method of fluid substitution in porous rock requires the total porosity and the elastic modulus of the mineral phase as input and assumes that the fluid reaches instantaneous hydraulic equilibrium throughout the pore space. This assumption may not be appropriate for shaley sediment b...

Full description

Bibliographic Details
Main Authors: Dvorkin, J., Mavko, G., Gurevich, Boris
Format: Journal Article
Published: Society of Exploration Geophysics 2007
Online Access:http://hdl.handle.net/20.500.11937/14723
Description
Summary:The traditional method of fluid substitution in porous rock requires the total porosity and the elastic modulus of the mineral phase as input and assumes that the fluid reaches instantaneous hydraulic equilibrium throughout the pore space. This assumption may not be appropriate for shaley sediment because of the low permeability of shale and the resulting immobility of the water in it. To address this problem, we propose an alternative method that uses effective porosity instead of total porosity. Effective porosity is lower than total porosity if porous shale is present in the system. A new, composite mineral phase is introduced, which includes the porous water-saturated shale together with the nonporous minerals and whose elastic modulus is an average of those of its components, including the porous shale. This alternative method increases the sensitivity of the elastic properties of sediment-to-pore-fluid changes and therefore may be used as a physics-based theoretical tool to better explain and interpret seismic data during exploration as well as variations in seismic response as hydrocarbon production progresses.