Rainfall and sentinel chicken seroconversions predict human cases of Murray Valley encephalitis in the north of Western Australia

Background Murray Valley encephalitis virus (MVEV) is a flavivirus that occurs in Australia and New Guinea. While clinical cases are uncommon, MVEV can cause severe encephalitis with high mortality. Sentinel chicken surveillance is used at many sites around Australia to provide an early warning syst...

Full description

Bibliographic Details
Main Authors: Selvey, Linda, Johansen, C., Broom, A., Antao, Catarina, Lindsay, M., Mackenzie, John, Smith, D.
Format: Journal Article
Published: BioMed Central 2014
Subjects:
Online Access:http://hdl.handle.net/20.500.11937/14421
_version_ 1848748618588094464
author Selvey, Linda
Johansen, C.
Broom, A.
Antao, Catarina
Lindsay, M.
Mackenzie, John
Smith, D.
author_facet Selvey, Linda
Johansen, C.
Broom, A.
Antao, Catarina
Lindsay, M.
Mackenzie, John
Smith, D.
author_sort Selvey, Linda
building Curtin Institutional Repository
collection Online Access
description Background Murray Valley encephalitis virus (MVEV) is a flavivirus that occurs in Australia and New Guinea. While clinical cases are uncommon, MVEV can cause severe encephalitis with high mortality. Sentinel chicken surveillance is used at many sites around Australia to provide an early warning system for risk of human infection in areas that have low population density and geographical remoteness. MVEV in Western Australia occurs in areas of low population density and geographical remoteness, resulting in logistical challenges with surveillance systems and few human cases. While epidemiological data has suggested an association between rainfall and MVEV activity in outbreak years, it has not been quantified, and the association between rainfall and sporadic cases is less clear. In this study we analysed 22 years of sentinel chicken and human case data from Western Australia in order to evaluate the effectiveness of sentinel chicken surveillance for MVEV and assess the association between rainfall and MVEV activity. Methods Sentinel chicken seroconversion, human case and rainfall data from the Kimberley and Pilbara regions of Western Australia from 1990 to 2011 were analysed using negative binomial regression. Sentinel chicken seroconversion and human cases were used as dependent variables in the model. The model was then tested against sentinel chicken and rainfall data from 2012 and 2013.Results Sentinel chicken seroconversion preceded all human cases except two in March 1993. Rainfall in the prior three months was significantly associated with both sentinel chicken seroconversion and human cases across the regions of interest. Sentinel chicken seroconversion was also predictive of human cases in the models. The model predicted sentinel chicken seroconversion in the Kimberley but not in the Pilbara, where seroconversions early in 2012 were not predicted. The latter may be due to localised MVEV activity in isolated foci at dams, which do not reflect broader virus activity in the region. Conclusions We showed that rainfall and sentinel chickens provide a useful early warning of MVEV risk to humans across endemic and epidemic areas, and that a combination of the two indicators improves the ability to assess MVEV risk and inform risk management measures.
first_indexed 2025-11-14T07:07:54Z
format Journal Article
id curtin-20.500.11937-14421
institution Curtin University Malaysia
institution_category Local University
last_indexed 2025-11-14T07:07:54Z
publishDate 2014
publisher BioMed Central
recordtype eprints
repository_type Digital Repository
spelling curtin-20.500.11937-144212017-09-13T14:06:28Z Rainfall and sentinel chicken seroconversions predict human cases of Murray Valley encephalitis in the north of Western Australia Selvey, Linda Johansen, C. Broom, A. Antao, Catarina Lindsay, M. Mackenzie, John Smith, D. Epidemiology Murray valley encephalitis Sentinel chicken surveillance Environmental factors Flavivirus Human risk Background Murray Valley encephalitis virus (MVEV) is a flavivirus that occurs in Australia and New Guinea. While clinical cases are uncommon, MVEV can cause severe encephalitis with high mortality. Sentinel chicken surveillance is used at many sites around Australia to provide an early warning system for risk of human infection in areas that have low population density and geographical remoteness. MVEV in Western Australia occurs in areas of low population density and geographical remoteness, resulting in logistical challenges with surveillance systems and few human cases. While epidemiological data has suggested an association between rainfall and MVEV activity in outbreak years, it has not been quantified, and the association between rainfall and sporadic cases is less clear. In this study we analysed 22 years of sentinel chicken and human case data from Western Australia in order to evaluate the effectiveness of sentinel chicken surveillance for MVEV and assess the association between rainfall and MVEV activity. Methods Sentinel chicken seroconversion, human case and rainfall data from the Kimberley and Pilbara regions of Western Australia from 1990 to 2011 were analysed using negative binomial regression. Sentinel chicken seroconversion and human cases were used as dependent variables in the model. The model was then tested against sentinel chicken and rainfall data from 2012 and 2013.Results Sentinel chicken seroconversion preceded all human cases except two in March 1993. Rainfall in the prior three months was significantly associated with both sentinel chicken seroconversion and human cases across the regions of interest. Sentinel chicken seroconversion was also predictive of human cases in the models. The model predicted sentinel chicken seroconversion in the Kimberley but not in the Pilbara, where seroconversions early in 2012 were not predicted. The latter may be due to localised MVEV activity in isolated foci at dams, which do not reflect broader virus activity in the region. Conclusions We showed that rainfall and sentinel chickens provide a useful early warning of MVEV risk to humans across endemic and epidemic areas, and that a combination of the two indicators improves the ability to assess MVEV risk and inform risk management measures. 2014 Journal Article http://hdl.handle.net/20.500.11937/14421 10.1186/s12879-014-0672-3 BioMed Central fulltext
spellingShingle Epidemiology
Murray valley encephalitis
Sentinel chicken surveillance
Environmental factors
Flavivirus
Human risk
Selvey, Linda
Johansen, C.
Broom, A.
Antao, Catarina
Lindsay, M.
Mackenzie, John
Smith, D.
Rainfall and sentinel chicken seroconversions predict human cases of Murray Valley encephalitis in the north of Western Australia
title Rainfall and sentinel chicken seroconversions predict human cases of Murray Valley encephalitis in the north of Western Australia
title_full Rainfall and sentinel chicken seroconversions predict human cases of Murray Valley encephalitis in the north of Western Australia
title_fullStr Rainfall and sentinel chicken seroconversions predict human cases of Murray Valley encephalitis in the north of Western Australia
title_full_unstemmed Rainfall and sentinel chicken seroconversions predict human cases of Murray Valley encephalitis in the north of Western Australia
title_short Rainfall and sentinel chicken seroconversions predict human cases of Murray Valley encephalitis in the north of Western Australia
title_sort rainfall and sentinel chicken seroconversions predict human cases of murray valley encephalitis in the north of western australia
topic Epidemiology
Murray valley encephalitis
Sentinel chicken surveillance
Environmental factors
Flavivirus
Human risk
url http://hdl.handle.net/20.500.11937/14421