Volume-Based Thermoelasticity: Consequences of the (Near) Proportionality of Isothermal Compressibility to Formula-Unit Volume

Groups of structurally related materials, including the alkali halides, exhibit a proportionality of isothermal compressibility to formula-unit volume. The relationship has recently been explored by Glasser and by Recio et al. In this paper, we present the consequences of such proportionality on th...

Full description

Bibliographic Details
Main Authors: Jenkins, H., Glasser, Leslie, Lee, J.
Format: Journal Article
Published: American Chemical Society 2010
Online Access:http://hdl.handle.net/20.500.11937/14278
Description
Summary:Groups of structurally related materials, including the alkali halides, exhibit a proportionality of isothermal compressibility to formula-unit volume. The relationship has recently been explored by Glasser and by Recio et al. In this paper, we present the consequences of such proportionality on the relationships of Born-Lande and Born-Mayer parameters to the formula-unit volume. These relationships have then been tested separately on (i) alkali (excluding cesium) halides and (ii) cesium halides.We conclude that the equations fit the NaCl-type materials satisfactorily, but less well for the CsCl-type materials, and that the Born-Mayer equation is more applicable. These results confirm the conclusion that volume is intimately linked to thermodynamic quantities, as already demonstrated by our development of volume-based thermodynamics (VBT).