Synthesis of Poly(2-Hydroxyethyl Methacrylate) Sponges via Activators Regenerated by Electron-transfer Atom-transfer Radical Polymerization

Activators regenerated by electron-transfer atom-transfer radical polymerization, catalyzed by tris(2-pyridylmethyl)amine/CuBr2 and Na{Cu(Gly3)}, was used to synthesize poly(2-hydroxyethyl methacrylate) sponges from 80 : 20 H2O/2-hydroxyethyl methacrylate mixtures. Polymerization-induced phase separ...

Full description

Bibliographic Details
Main Authors: Paterson, S., Brown, David, Shaw, J., Chirila, T., Baker, M.
Format: Journal Article
Published: CSIRO Publishing 2012
Online Access:http://hdl.handle.net/20.500.11937/14144
Description
Summary:Activators regenerated by electron-transfer atom-transfer radical polymerization, catalyzed by tris(2-pyridylmethyl)amine/CuBr2 and Na{Cu(Gly3)}, was used to synthesize poly(2-hydroxyethyl methacrylate) sponges from 80 : 20 H2O/2-hydroxyethyl methacrylate mixtures. Polymerization-induced phase separations resulted in sponges having morphologies based on agglomerated polymer droplets. During the synthesis of poly(2-hydroxyethyl methacrylate) sponges, first-order kinetics were observed up to a maximum of ~50 % conversion regardless of the catalyst used. The morphologies of the sponges were dependent on the rate of polymerization, slower polymerization rates resulting in polymers with larger morphological features (pores and polymer droplets).