Study of electrochemical phosphate sensing systems: Spectrometric, potentiometric and voltammetric evaluation

Characterization of the interaction of a urea-functionalized calix[4]arene ionophore and phosphate wasundertaken by combination of nuclear magnetic resonance (NMR) spectrometry, potentiometric selectivity coefficient evaluation and voltammetric ion transfer at the interface between two immiscibleele...

Full description

Bibliographic Details
Main Authors: Kivlehan, F., Mace, W., Moynihan, H., Arrigan, Damien
Format: Journal Article
Published: Pergamon-Elsevier Science Ltd 2009
Online Access:http://hdl.handle.net/20.500.11937/14044
Description
Summary:Characterization of the interaction of a urea-functionalized calix[4]arene ionophore and phosphate wasundertaken by combination of nuclear magnetic resonance (NMR) spectrometry, potentiometric selectivity coefficient evaluation and voltammetric ion transfer at the interface between two immiscibleelectrolyte solutions (ITIES). NMR revealed that the urea protons were involved in complexation withthe target anion and potentiometric separate solution selectivity data indicated selectivity for phosphateover chloride and sulphate. Voltammetry at the ITIES confirmed that the ionophore-facilitated transfer ofmonohydrogen phosphate occurred in preference to dihydrogen phosphate transfer. The results correlatewith previously reported data on the potentiometric evaluation of this calixarene as an anionophore inPVC-membrane electrodes. The data provide the basis for development of amperometric monohydrogenphosphate sensors based on the ion-transfer principle.