Investigation of iron sulfide impact crater residues: A combined analysis by scanning and transmission electron microscopy

Samples returned from comet 81P/Wild 2 by the Stardust mission provided an unequaled opportunity to compare previously available extraterrestrial samples against those from a known comet. Iron sulfides are a major constituent of cometary grains commonly identified within cometary interplanetary dust...

Full description

Bibliographic Details
Main Authors: Wozniakiewicz, P., Ishii, H., Kearsley, A., Burchell, M., Bland, Phil, Bradley, J., Dai, Z., Teslich, N., Collins, D., Cole, M., Russell, S.
Format: Journal Article
Published: Meteoritical Society 2011
Online Access:http://hdl.handle.net/20.500.11937/13389
_version_ 1848748334858108928
author Wozniakiewicz, P.
Ishii, H.
Kearsley, A.
Burchell, M.
Bland, Phil
Bradley, J.
Dai, Z.
Teslich, N.
Collins, D.
Cole, M.
Russell, S.
author_facet Wozniakiewicz, P.
Ishii, H.
Kearsley, A.
Burchell, M.
Bland, Phil
Bradley, J.
Dai, Z.
Teslich, N.
Collins, D.
Cole, M.
Russell, S.
author_sort Wozniakiewicz, P.
building Curtin Institutional Repository
collection Online Access
description Samples returned from comet 81P/Wild 2 by the Stardust mission provided an unequaled opportunity to compare previously available extraterrestrial samples against those from a known comet. Iron sulfides are a major constituent of cometary grains commonly identified within cometary interplanetary dust particles (IDPs) and Wild 2 samples. Chemical analyses indicate Wild 2 sulfides are fundamentally different from those in IDPs. However, as Wild 2 dust was collected via impact into capture media at approximately 6.1 km s−1, it is unclear whether this is due to variation in preaccretional/parent body processes experienced by these materials or due to heating and alteration during collection. We investigated alteration in pyrrhotite and pentlandite impacted into Stardust flight spare Al foils under encounter conditions by comparing scanning and transmission electron microscope (SEM, TEM) analyses of preimpact and postimpact samples and calculating estimates of various impact parameters. SEM is the primary method of analysis during initial in situ examination of Stardust foils, and therefore, we also sought to evaluate the data obtained by SEM using insights provided by TEM. We find iron sulfides experience heating, melting, separation, and loss of S, and mixing with molten Al. These results are consistent with estimated peak pressures and temperatures experienced (approximately 85 GPa, approximately 2600 K) and relative melting temperatures. Unambiguous identification of preserved iron sulfides may be possible by TEM through the location of Al-free regions. In most cases, the Ni:Fe ratio is preserved in both SEM and TEM analyses and may therefore also be used to predict original chemistry and estimate mineralogy.
first_indexed 2025-11-14T07:03:24Z
format Journal Article
id curtin-20.500.11937-13389
institution Curtin University Malaysia
institution_category Local University
last_indexed 2025-11-14T07:03:24Z
publishDate 2011
publisher Meteoritical Society
recordtype eprints
repository_type Digital Repository
spelling curtin-20.500.11937-133892017-02-28T01:33:48Z Investigation of iron sulfide impact crater residues: A combined analysis by scanning and transmission electron microscopy Wozniakiewicz, P. Ishii, H. Kearsley, A. Burchell, M. Bland, Phil Bradley, J. Dai, Z. Teslich, N. Collins, D. Cole, M. Russell, S. Samples returned from comet 81P/Wild 2 by the Stardust mission provided an unequaled opportunity to compare previously available extraterrestrial samples against those from a known comet. Iron sulfides are a major constituent of cometary grains commonly identified within cometary interplanetary dust particles (IDPs) and Wild 2 samples. Chemical analyses indicate Wild 2 sulfides are fundamentally different from those in IDPs. However, as Wild 2 dust was collected via impact into capture media at approximately 6.1 km s−1, it is unclear whether this is due to variation in preaccretional/parent body processes experienced by these materials or due to heating and alteration during collection. We investigated alteration in pyrrhotite and pentlandite impacted into Stardust flight spare Al foils under encounter conditions by comparing scanning and transmission electron microscope (SEM, TEM) analyses of preimpact and postimpact samples and calculating estimates of various impact parameters. SEM is the primary method of analysis during initial in situ examination of Stardust foils, and therefore, we also sought to evaluate the data obtained by SEM using insights provided by TEM. We find iron sulfides experience heating, melting, separation, and loss of S, and mixing with molten Al. These results are consistent with estimated peak pressures and temperatures experienced (approximately 85 GPa, approximately 2600 K) and relative melting temperatures. Unambiguous identification of preserved iron sulfides may be possible by TEM through the location of Al-free regions. In most cases, the Ni:Fe ratio is preserved in both SEM and TEM analyses and may therefore also be used to predict original chemistry and estimate mineralogy. 2011 Journal Article http://hdl.handle.net/20.500.11937/13389 Meteoritical Society restricted
spellingShingle Wozniakiewicz, P.
Ishii, H.
Kearsley, A.
Burchell, M.
Bland, Phil
Bradley, J.
Dai, Z.
Teslich, N.
Collins, D.
Cole, M.
Russell, S.
Investigation of iron sulfide impact crater residues: A combined analysis by scanning and transmission electron microscopy
title Investigation of iron sulfide impact crater residues: A combined analysis by scanning and transmission electron microscopy
title_full Investigation of iron sulfide impact crater residues: A combined analysis by scanning and transmission electron microscopy
title_fullStr Investigation of iron sulfide impact crater residues: A combined analysis by scanning and transmission electron microscopy
title_full_unstemmed Investigation of iron sulfide impact crater residues: A combined analysis by scanning and transmission electron microscopy
title_short Investigation of iron sulfide impact crater residues: A combined analysis by scanning and transmission electron microscopy
title_sort investigation of iron sulfide impact crater residues: a combined analysis by scanning and transmission electron microscopy
url http://hdl.handle.net/20.500.11937/13389