Space of SO(3) orbits of elasticity tensors

We construct an eighteen-dimensional orbifold that is in a one-to-one correspondence with the space of SO (3)-orbits of elasticity tensors. This allows us to obtain a local parametrization of SO (3)-orbits of elasticity tensors by six SO (6)-invariant and twelve SO (3)-invariant parameters. This pro...

Full description

Bibliographic Details
Main Authors: Bona, Andrej, Bucataru, I., Slawinski, Michael
Format: Journal Article
Published: PAN (Institute of Fundamental Technological Research) 2008
Subjects:
Online Access:http://am.ippt.pan.pl/index.php/am/article/viewFile/260/pdf
http://hdl.handle.net/20.500.11937/12031
_version_ 1848747965997383680
author Bona, Andrej
Bucataru, I.
Slawinski, Michael
author_facet Bona, Andrej
Bucataru, I.
Slawinski, Michael
author_sort Bona, Andrej
building Curtin Institutional Repository
collection Online Access
description We construct an eighteen-dimensional orbifold that is in a one-to-one correspondence with the space of SO (3)-orbits of elasticity tensors. This allows us to obtain a local parametrization of SO (3)-orbits of elasticity tensors by six SO (6)-invariant and twelve SO (3)-invariant parameters. This process unravels the structure of the space of the orbits of the elasticity tensors.
first_indexed 2025-11-14T06:57:32Z
format Journal Article
id curtin-20.500.11937-12031
institution Curtin University Malaysia
institution_category Local University
last_indexed 2025-11-14T06:57:32Z
publishDate 2008
publisher PAN (Institute of Fundamental Technological Research)
recordtype eprints
repository_type Digital Repository
spelling curtin-20.500.11937-120312017-10-02T02:27:29Z Space of SO(3) orbits of elasticity tensors Bona, Andrej Bucataru, I. Slawinski, Michael elasticity tensor orbifold space of orbits parametrization We construct an eighteen-dimensional orbifold that is in a one-to-one correspondence with the space of SO (3)-orbits of elasticity tensors. This allows us to obtain a local parametrization of SO (3)-orbits of elasticity tensors by six SO (6)-invariant and twelve SO (3)-invariant parameters. This process unravels the structure of the space of the orbits of the elasticity tensors. 2008 Journal Article http://hdl.handle.net/20.500.11937/12031 http://am.ippt.pan.pl/index.php/am/article/viewFile/260/pdf PAN (Institute of Fundamental Technological Research) restricted
spellingShingle elasticity tensor
orbifold
space of orbits
parametrization
Bona, Andrej
Bucataru, I.
Slawinski, Michael
Space of SO(3) orbits of elasticity tensors
title Space of SO(3) orbits of elasticity tensors
title_full Space of SO(3) orbits of elasticity tensors
title_fullStr Space of SO(3) orbits of elasticity tensors
title_full_unstemmed Space of SO(3) orbits of elasticity tensors
title_short Space of SO(3) orbits of elasticity tensors
title_sort space of so(3) orbits of elasticity tensors
topic elasticity tensor
orbifold
space of orbits
parametrization
url http://am.ippt.pan.pl/index.php/am/article/viewFile/260/pdf
http://hdl.handle.net/20.500.11937/12031