Bounded Controllers for Global Path Tracking Control of Unicycle-type Mobile Robots

This paper presents a design of bounded controllers with a predetermined bound for global path tracking control of unicycle-type mobile robots at the torque level. A new one-step ahead backstepping method is first introduced. The heading angle and linear velocity of the robots are then considered as...

Full description

Bibliographic Details
Main Author: Do, Khac Duc
Format: Journal Article
Published: Elsevier Science BV 2013
Subjects:
Online Access:http://hdl.handle.net/20.500.11937/11774
Description
Summary:This paper presents a design of bounded controllers with a predetermined bound for global path tracking control of unicycle-type mobile robots at the torque level. A new one-step ahead backstepping method is first introduced. The heading angle and linear velocity of the robots are then considered as immediate controls to force the position of the robots to globally and asymptotically track its reference path. These immediate controls are designed based on the one-step ahead backstepping method to yield bounded control laws. Next, the one-step ahead backstepping method is applied again to design bounded control torques of the robots with a pre-specified bound. The proposed control design ensures global asymptotical and local exponential convergence of the position and orientation tracking errors to zero, and bounded torques driving the robots. Experimental results on a Khepera mobile robot verify the proposed control controller.