Constant pressure path integral Gibbs ensemble Monte Carlo method

We present the implementation of a real-space constant pressure path integral Gibbs ensemble Monte Carlo (CP-PIGEMC) method for the simulation of one-component fluid consists of distinguishable quantum particles (henceforth referred to as Boltzmannons) in an external potential field at finite temper...

Full description

Bibliographic Details
Main Authors: Kowalczyk, Piotr, Gauden, P., Terzyk, A., Pantatosaki, E., Papadopoulos, G.
Format: Journal Article
Published: American Chemical Society 2013
Online Access:http://hdl.handle.net/20.500.11937/10730
Description
Summary:We present the implementation of a real-space constant pressure path integral Gibbs ensemble Monte Carlo (CP-PIGEMC) method for the simulation of one-component fluid consists of distinguishable quantum particles (henceforth referred to as Boltzmannons) in an external potential field at finite temperatures. We apply this simulation method to study the para-H2 adsorption in NaX zeolite at 77 K and pressures up to 100 bar. We present a new set of effective solid-fluid parameters optimized for path integral simulations of hydrogen isotope adsorption and separation in synthetic zeolites. The agreement among CP-PIGEMC, experiment, and the path integral grand canonical Monte Carlo method (PIGCMC) is very good, even at high pressures. CP-PIGEMC is a particularly useful method for simulation of one-component quantum fluid composed of Boltzmannons at finite temperatures, when the chemical potential is difficult to measure or calculate explicitly.We present the implementation of a real-space constant pressure path integral Gibbs ensemble Monte Carlo (CP-PIGEMC) method for the simulation of one-component fluid consists of distinguishable quantum particles (henceforth referred to as Boltzmannons) in an external potential field at finite temperatures. We apply this simulation method to study the para-H2 adsorption in NaX zeolite at 77 K and pressures up to 100 bar. We present a new set of effective solid-fluid parameters optimized for path integral simulations of hydrogen isotope adsorption and separation in synthetic zeolites. The agreement among CP-PIGEMC, experiment, and the path integral grand canonical Monte Carlo method (PIGCMC) is very good, even at high pressures. CP-PIGEMC is a particularly useful method for simulation of one-component quantum fluid composed of Boltzmannons at finite temperatures, when the chemical potential is difficult to measure or calculate explicitly.