Monitoring and volumetric estimation of injected CO 2 using 4D seismic, petrophysical data, core measurements and well logging: A case study at Ketzin, Germany
More than 50 000 tons of CO 2 have been injected at Ketzin into the Stuttgart Formation, a saline aquifer, at approximately 620 m depth, as of summer 2011. We present here results from the 1 st repeat 3D seismic survey that was performed at the site in autumn 2009, after about 22 000 tons of CO 2 ha...
| Main Authors: | , , , , , , , |
|---|---|
| Format: | Journal Article |
| Published: |
2012
|
| Online Access: | http://hdl.handle.net/20.500.11937/10638 |
| _version_ | 1848747588371611648 |
|---|---|
| author | Ivanova, A. Kashubin, A. Juhojuntti, N. Kummerow, J. Henninges, J. Juhlin, Christopher Lüth, S. Ivandic, M. |
| author_facet | Ivanova, A. Kashubin, A. Juhojuntti, N. Kummerow, J. Henninges, J. Juhlin, Christopher Lüth, S. Ivandic, M. |
| author_sort | Ivanova, A. |
| building | Curtin Institutional Repository |
| collection | Online Access |
| description | More than 50 000 tons of CO 2 have been injected at Ketzin into the Stuttgart Formation, a saline aquifer, at approximately 620 m depth, as of summer 2011. We present here results from the 1 st repeat 3D seismic survey that was performed at the site in autumn 2009, after about 22 000 tons of CO 2 had been injected. We show here that rather complex time-lapse signatures of this CO 2 can be clearly observed within a radius of about 300 m from the injection well. The highly irregular amplitude response within this radius is attributed to the heterogeneity of the injection reservoir. Time delays to a reflection below the injection level are also observed. Petrophysical measurements on core samples and geophysical logging of CO 2 saturation levels allow an estimate of the total amount of CO 2 visible in the seismic data to be made. These estimates are somewhat lower than the actual amount of CO 2 injected at the time of the survey and they are dependent upon the choice of a number of parameters. In spite of some uncertainty, the close agreement between the amount injected and the amount observed is encouraging for quantitative monitoring of a CO 2 storage site using seismic methods. © 2012 European Association of Geoscientists & Engineers. |
| first_indexed | 2025-11-14T06:51:32Z |
| format | Journal Article |
| id | curtin-20.500.11937-10638 |
| institution | Curtin University Malaysia |
| institution_category | Local University |
| last_indexed | 2025-11-14T06:51:32Z |
| publishDate | 2012 |
| recordtype | eprints |
| repository_type | Digital Repository |
| spelling | curtin-20.500.11937-106382023-02-22T06:24:19Z Monitoring and volumetric estimation of injected CO 2 using 4D seismic, petrophysical data, core measurements and well logging: A case study at Ketzin, Germany Ivanova, A. Kashubin, A. Juhojuntti, N. Kummerow, J. Henninges, J. Juhlin, Christopher Lüth, S. Ivandic, M. More than 50 000 tons of CO 2 have been injected at Ketzin into the Stuttgart Formation, a saline aquifer, at approximately 620 m depth, as of summer 2011. We present here results from the 1 st repeat 3D seismic survey that was performed at the site in autumn 2009, after about 22 000 tons of CO 2 had been injected. We show here that rather complex time-lapse signatures of this CO 2 can be clearly observed within a radius of about 300 m from the injection well. The highly irregular amplitude response within this radius is attributed to the heterogeneity of the injection reservoir. Time delays to a reflection below the injection level are also observed. Petrophysical measurements on core samples and geophysical logging of CO 2 saturation levels allow an estimate of the total amount of CO 2 visible in the seismic data to be made. These estimates are somewhat lower than the actual amount of CO 2 injected at the time of the survey and they are dependent upon the choice of a number of parameters. In spite of some uncertainty, the close agreement between the amount injected and the amount observed is encouraging for quantitative monitoring of a CO 2 storage site using seismic methods. © 2012 European Association of Geoscientists & Engineers. 2012 Journal Article http://hdl.handle.net/20.500.11937/10638 10.1111/j.1365-2478.2012.01045.x unknown |
| spellingShingle | Ivanova, A. Kashubin, A. Juhojuntti, N. Kummerow, J. Henninges, J. Juhlin, Christopher Lüth, S. Ivandic, M. Monitoring and volumetric estimation of injected CO 2 using 4D seismic, petrophysical data, core measurements and well logging: A case study at Ketzin, Germany |
| title | Monitoring and volumetric estimation of injected CO 2 using 4D seismic, petrophysical data, core measurements and well logging: A case study at Ketzin, Germany |
| title_full | Monitoring and volumetric estimation of injected CO 2 using 4D seismic, petrophysical data, core measurements and well logging: A case study at Ketzin, Germany |
| title_fullStr | Monitoring and volumetric estimation of injected CO 2 using 4D seismic, petrophysical data, core measurements and well logging: A case study at Ketzin, Germany |
| title_full_unstemmed | Monitoring and volumetric estimation of injected CO 2 using 4D seismic, petrophysical data, core measurements and well logging: A case study at Ketzin, Germany |
| title_short | Monitoring and volumetric estimation of injected CO 2 using 4D seismic, petrophysical data, core measurements and well logging: A case study at Ketzin, Germany |
| title_sort | monitoring and volumetric estimation of injected co 2 using 4d seismic, petrophysical data, core measurements and well logging: a case study at ketzin, germany |
| url | http://hdl.handle.net/20.500.11937/10638 |