An improved method for measuring muon energy using the truncated mean of dE/dx

The measurement of muon energy is critical for many analyses in large Cherenkov detectors, particularly those that involve separating extraterrestrial neutrinos from the atmospheric neutrino background. Muon energy has traditionally been determined by measuring the specific energy loss (dE/dx) along...

Full description

Bibliographic Details
Main Authors: Abbasi, R., Abdou, Y., Ackermann, M., Adams, J., Aguilar, J., Ahlers, M., Altmann, D., Andeen, K., Auffenberg, J., Bai, X., Baker, M., Barwick, S., Baum, V., Bay, R., Beattie, K., Beatty, J., Bechet, S., Becker Tjus, J., Becker, K., Bell, M., Benabderrahmane, M., Benzvi, S., Berdermann, J., Berghaus, P., Berley, D., Bernardini, E., Bertrand, D., Besson, D., Bindig, D., Bissok, M., Blaufuss, E., Blumenthal, J., Boersma, D., Bohm, C., Bose, D., Böser, S., Botner, O., Brayeur, L., Brown, A., Bruijn, R., Brunner, J., Buitink, S., Carson, Michael, Casey, J., Casier, M., Chirkin, D., Christy, B., Clevermann, F., Cohen, S., Cowen, D., Cruz Silva, A., Danninger, M., Daughhetee, J., Davis, J., De Clercq, C., Descamps, F., Desiati, P., De Vries-Uiterweerd, G., Deyoung, T., Díaz-Vélez, J., Dreyer, J., Dumm, J., Dunkman, M., Eagan, R., Eisch, J., Ellsworth, R., Engdegård, O., Euler, S., Evenson, P., Fadiran, O., Fazely, A., Fedynitch, A., Feintzeig, J., Feusels, T., Filimonov, K., Finley, C., Fischer-Wasels, T., Flis, S., Franckowiak, A., Franke, R., Frantzen, K., Fuchs, T., Gaisser, T., Gallagher, J., Gerhardt, L., Gladstone, L., Glüsenkamp, T., Goldschmidt, A., Goodman, J., Góra, D., Grant, D., Groß, A., Grullon, S., Gurtner, M., Ha, C.
Format: Journal Article
Published: 2013
Online Access:http://hdl.handle.net/20.500.11937/10058
_version_ 1848746125691977728
author Abbasi, R.
Abdou, Y.
Ackermann, M.
Adams, J.
Aguilar, J.
Ahlers, M.
Altmann, D.
Andeen, K.
Auffenberg, J.
Bai, X.
Baker, M.
Barwick, S.
Baum, V.
Bay, R.
Beattie, K.
Beatty, J.
Bechet, S.
Becker Tjus, J.
Becker, K.
Bell, M.
Benabderrahmane, M.
Benzvi, S.
Berdermann, J.
Berghaus, P.
Berley, D.
Bernardini, E.
Bertrand, D.
Besson, D.
Bindig, D.
Bissok, M.
Blaufuss, E.
Blumenthal, J.
Boersma, D.
Bohm, C.
Bose, D.
Böser, S.
Botner, O.
Brayeur, L.
Brown, A.
Bruijn, R.
Brunner, J.
Buitink, S.
Carson, Michael
Casey, J.
Casier, M.
Chirkin, D.
Christy, B.
Clevermann, F.
Cohen, S.
Cowen, D.
Cruz Silva, A.
Danninger, M.
Daughhetee, J.
Davis, J.
De Clercq, C.
Descamps, F.
Desiati, P.
De Vries-Uiterweerd, G.
Deyoung, T.
Díaz-Vélez, J.
Dreyer, J.
Dumm, J.
Dunkman, M.
Eagan, R.
Eisch, J.
Ellsworth, R.
Engdegård, O.
Euler, S.
Evenson, P.
Fadiran, O.
Fazely, A.
Fedynitch, A.
Feintzeig, J.
Feusels, T.
Filimonov, K.
Finley, C.
Fischer-Wasels, T.
Flis, S.
Franckowiak, A.
Franke, R.
Frantzen, K.
Fuchs, T.
Gaisser, T.
Gallagher, J.
Gerhardt, L.
Gladstone, L.
Glüsenkamp, T.
Goldschmidt, A.
Goodman, J.
Góra, D.
Grant, D.
Groß, A.
Grullon, S.
Gurtner, M.
Ha, C.
author_facet Abbasi, R.
Abdou, Y.
Ackermann, M.
Adams, J.
Aguilar, J.
Ahlers, M.
Altmann, D.
Andeen, K.
Auffenberg, J.
Bai, X.
Baker, M.
Barwick, S.
Baum, V.
Bay, R.
Beattie, K.
Beatty, J.
Bechet, S.
Becker Tjus, J.
Becker, K.
Bell, M.
Benabderrahmane, M.
Benzvi, S.
Berdermann, J.
Berghaus, P.
Berley, D.
Bernardini, E.
Bertrand, D.
Besson, D.
Bindig, D.
Bissok, M.
Blaufuss, E.
Blumenthal, J.
Boersma, D.
Bohm, C.
Bose, D.
Böser, S.
Botner, O.
Brayeur, L.
Brown, A.
Bruijn, R.
Brunner, J.
Buitink, S.
Carson, Michael
Casey, J.
Casier, M.
Chirkin, D.
Christy, B.
Clevermann, F.
Cohen, S.
Cowen, D.
Cruz Silva, A.
Danninger, M.
Daughhetee, J.
Davis, J.
De Clercq, C.
Descamps, F.
Desiati, P.
De Vries-Uiterweerd, G.
Deyoung, T.
Díaz-Vélez, J.
Dreyer, J.
Dumm, J.
Dunkman, M.
Eagan, R.
Eisch, J.
Ellsworth, R.
Engdegård, O.
Euler, S.
Evenson, P.
Fadiran, O.
Fazely, A.
Fedynitch, A.
Feintzeig, J.
Feusels, T.
Filimonov, K.
Finley, C.
Fischer-Wasels, T.
Flis, S.
Franckowiak, A.
Franke, R.
Frantzen, K.
Fuchs, T.
Gaisser, T.
Gallagher, J.
Gerhardt, L.
Gladstone, L.
Glüsenkamp, T.
Goldschmidt, A.
Goodman, J.
Góra, D.
Grant, D.
Groß, A.
Grullon, S.
Gurtner, M.
Ha, C.
author_sort Abbasi, R.
building Curtin Institutional Repository
collection Online Access
description The measurement of muon energy is critical for many analyses in large Cherenkov detectors, particularly those that involve separating extraterrestrial neutrinos from the atmospheric neutrino background. Muon energy has traditionally been determined by measuring the specific energy loss (dE/dx) along the muon's path and relating the dE/dx to the muon energy. Because high-energy muons (Eµ>1TeV) lose energy randomly, the spread in dE/dx values is quite large, leading to a typical energy resolution of 0.29 in log10(Eµ) for a muon observed over a 1 km path length in the IceCube detector. In this paper, we present an improved method that uses a truncated mean and other techniques to determine the muon energy. The muon track is divided into separate segments with individual dE/dx values. The elimination of segments with the highest dE/dx results in an overall dE/dx that is more closely correlated to the muon energy. This method results in an energy resolution of 0.22 in log10(Eµ), which gives a 26% improvement. This technique is applicable to any large water or ice detector and potentially to large scintillator or liquid argon detectors. © 2012 Elsevier B.V.
first_indexed 2025-11-14T06:28:17Z
format Journal Article
id curtin-20.500.11937-10058
institution Curtin University Malaysia
institution_category Local University
last_indexed 2025-11-14T06:28:17Z
publishDate 2013
recordtype eprints
repository_type Digital Repository
spelling curtin-20.500.11937-100582018-03-29T09:05:56Z An improved method for measuring muon energy using the truncated mean of dE/dx Abbasi, R. Abdou, Y. Ackermann, M. Adams, J. Aguilar, J. Ahlers, M. Altmann, D. Andeen, K. Auffenberg, J. Bai, X. Baker, M. Barwick, S. Baum, V. Bay, R. Beattie, K. Beatty, J. Bechet, S. Becker Tjus, J. Becker, K. Bell, M. Benabderrahmane, M. Benzvi, S. Berdermann, J. Berghaus, P. Berley, D. Bernardini, E. Bertrand, D. Besson, D. Bindig, D. Bissok, M. Blaufuss, E. Blumenthal, J. Boersma, D. Bohm, C. Bose, D. Böser, S. Botner, O. Brayeur, L. Brown, A. Bruijn, R. Brunner, J. Buitink, S. Carson, Michael Casey, J. Casier, M. Chirkin, D. Christy, B. Clevermann, F. Cohen, S. Cowen, D. Cruz Silva, A. Danninger, M. Daughhetee, J. Davis, J. De Clercq, C. Descamps, F. Desiati, P. De Vries-Uiterweerd, G. Deyoung, T. Díaz-Vélez, J. Dreyer, J. Dumm, J. Dunkman, M. Eagan, R. Eisch, J. Ellsworth, R. Engdegård, O. Euler, S. Evenson, P. Fadiran, O. Fazely, A. Fedynitch, A. Feintzeig, J. Feusels, T. Filimonov, K. Finley, C. Fischer-Wasels, T. Flis, S. Franckowiak, A. Franke, R. Frantzen, K. Fuchs, T. Gaisser, T. Gallagher, J. Gerhardt, L. Gladstone, L. Glüsenkamp, T. Goldschmidt, A. Goodman, J. Góra, D. Grant, D. Groß, A. Grullon, S. Gurtner, M. Ha, C. The measurement of muon energy is critical for many analyses in large Cherenkov detectors, particularly those that involve separating extraterrestrial neutrinos from the atmospheric neutrino background. Muon energy has traditionally been determined by measuring the specific energy loss (dE/dx) along the muon's path and relating the dE/dx to the muon energy. Because high-energy muons (Eµ>1TeV) lose energy randomly, the spread in dE/dx values is quite large, leading to a typical energy resolution of 0.29 in log10(Eµ) for a muon observed over a 1 km path length in the IceCube detector. In this paper, we present an improved method that uses a truncated mean and other techniques to determine the muon energy. The muon track is divided into separate segments with individual dE/dx values. The elimination of segments with the highest dE/dx results in an overall dE/dx that is more closely correlated to the muon energy. This method results in an energy resolution of 0.22 in log10(Eµ), which gives a 26% improvement. This technique is applicable to any large water or ice detector and potentially to large scintillator or liquid argon detectors. © 2012 Elsevier B.V. 2013 Journal Article http://hdl.handle.net/20.500.11937/10058 10.1016/j.nima.2012.11.081 restricted
spellingShingle Abbasi, R.
Abdou, Y.
Ackermann, M.
Adams, J.
Aguilar, J.
Ahlers, M.
Altmann, D.
Andeen, K.
Auffenberg, J.
Bai, X.
Baker, M.
Barwick, S.
Baum, V.
Bay, R.
Beattie, K.
Beatty, J.
Bechet, S.
Becker Tjus, J.
Becker, K.
Bell, M.
Benabderrahmane, M.
Benzvi, S.
Berdermann, J.
Berghaus, P.
Berley, D.
Bernardini, E.
Bertrand, D.
Besson, D.
Bindig, D.
Bissok, M.
Blaufuss, E.
Blumenthal, J.
Boersma, D.
Bohm, C.
Bose, D.
Böser, S.
Botner, O.
Brayeur, L.
Brown, A.
Bruijn, R.
Brunner, J.
Buitink, S.
Carson, Michael
Casey, J.
Casier, M.
Chirkin, D.
Christy, B.
Clevermann, F.
Cohen, S.
Cowen, D.
Cruz Silva, A.
Danninger, M.
Daughhetee, J.
Davis, J.
De Clercq, C.
Descamps, F.
Desiati, P.
De Vries-Uiterweerd, G.
Deyoung, T.
Díaz-Vélez, J.
Dreyer, J.
Dumm, J.
Dunkman, M.
Eagan, R.
Eisch, J.
Ellsworth, R.
Engdegård, O.
Euler, S.
Evenson, P.
Fadiran, O.
Fazely, A.
Fedynitch, A.
Feintzeig, J.
Feusels, T.
Filimonov, K.
Finley, C.
Fischer-Wasels, T.
Flis, S.
Franckowiak, A.
Franke, R.
Frantzen, K.
Fuchs, T.
Gaisser, T.
Gallagher, J.
Gerhardt, L.
Gladstone, L.
Glüsenkamp, T.
Goldschmidt, A.
Goodman, J.
Góra, D.
Grant, D.
Groß, A.
Grullon, S.
Gurtner, M.
Ha, C.
An improved method for measuring muon energy using the truncated mean of dE/dx
title An improved method for measuring muon energy using the truncated mean of dE/dx
title_full An improved method for measuring muon energy using the truncated mean of dE/dx
title_fullStr An improved method for measuring muon energy using the truncated mean of dE/dx
title_full_unstemmed An improved method for measuring muon energy using the truncated mean of dE/dx
title_short An improved method for measuring muon energy using the truncated mean of dE/dx
title_sort improved method for measuring muon energy using the truncated mean of de/dx
url http://hdl.handle.net/20.500.11937/10058