Search Results - Zaherpour, Jamal
- Showing 1 - 5 results of 5
-
1
-
2
Exploring the value of machine learning for weighted multi-model combination of an ensemble of global hydrological models by Zaherpour, Jamal, Mount, Nick J., Gosling, Simon N., Dankers, Rutger, Eisner, Stephanie, Dieter, Gerten, Liu, Xingcai, Masaki, Yoshimitsu, Müller Schmied, Hannes, Tang, Qiuhong, Wada, Yoshihide
Published 2019Get full text
-
3
A comparison of changes in river runoff from multiple global and catchment-scale hydrological models under global warming scenarios of 1°C, 2°C and 3°C by Gosling, Simon, Zaherpour, Jamal, Mount, Nick J., Hattermann, Fred, Dankers, Rutger, Arheimer, Berit, Breuer, Lutz, Ding, Jie, Haddeland, Ingjerd, Kumar, Rohini, Kundu, Dipangkar, Liu, Junguo, van Griensven, Ann, Veldkamp, Ted, Vetter, Tobias, Wang, Xiaoyan, Zhang, Xinxin
Published 2016Get full text
-
4
Human impact parameterizations in global hydrological models improves estimates of monthly discharges and hydrological extremes: a multi-model validation study by Veldkamp, Ted Isis Elize, Zhao, Fang, Ward, Philip J., Moel, Hans de, Aerts, Jeroen C.J.H., Müller Schmied, Hannes, Portmann, Felix T., Masaki, Yoshimitsu, Pokhrel, Yadu, Liu, Xingcai, Satoh, Yusuke, Gerten, Dieter, Gosling, Simon N., Zaherpour, Jamal, Wada, Y.
Published 2018Get full text
-
5
Worldwide evaluation of mean and extreme runoff from six global-scale hydrological models that account for human impacts by Zaherpour, Jamal, Gosling, Simon N., Mount, Nick J., Müller Schmied, Hannes, Veldkamp, Ted, Dankers, Rutger, Eisner, Stephanie, Gerten, Dieter, Gudmundsson, Lukas, Haddeland, I., Hanasaki, Naota, Kim, Hyungjun, Leng, Guoyong, Liu, Junguo, Masaki, Yoshimitsu, Oki, Taikan, Pokhrel, Yadu, Satoh, Yusuke, Schewe, Jacob, Wada, Yoshihide
Published 2018Get full text